Везде преобладают легкие элементы. Среди средних по массе элементов повышенной распространенностью выделяется железо, ядра которого упакованы наиболее плотно. Чаще других встречаются и кислород, калий, свинец с магическим числом нуклонов в ядрах.

И содержание элементов в природе, и происхождение их связано с законами, управляющими ядерным веществом. С идеей об эволюции элементов вступал в науку еще Э. Резерфорд. Но только физика атомного ядра, у истока которой он стоял, создала мощный фундамент для решения проблемы эволюции и происхождения химических элементов.

По рассыпанному вдоль линии стабильности набору атомных ядер так же сложно было представить точные контуры древнейшей системы изотопов химических элементов, как трудно было по отдельным камням воссоздать первоначальный облик уникального собора в Юрьев-Польском, развалившегося в XV веке.

Беседы об атомном ядре i_031.png

Известному советскому искусствоведу Г. Вагнеру в работе над реконструкцией этого древнего памятника архитектуры помогло глубокое изучение тематических особенностей художественной резьбы, покрывающей буквально каждый камень собора. А физикам в решении вопроса о происхождении элементов помогают эксперименты на ускорителях тяжелых ионов. Искусственно вызываемые ядерные реакции как бы возвращают нам те давно исчезнувшие химические элементы и изотопы с необычным соотношением протонов и нейтронов, которых, по-видимому, было много среди первозданного набора ядер.

Усилиями ученых многих специальностей удается, как на кинопленке, немного прокрутить в обратную сторону естественный ход развития мира.

Физики связывают эволюцию элементов с определенными реакциями, в которых из более простых ядер рождаются сложные. Эволюция элементов — результат определенной последовательности ядерных реакций, протекающих в любом уголке вселенной, где есть подходящие условия.

Но для рождения атомных ядер требуется какой-то исходный материал и достаточное количество энергии. По горячей модели развития вселенной температура вещества и плотность на ранней стадии были столь велики, что легко обеспечивали непрерывный хоровод рождающихся и исчезающих элементарных частиц. Когда же плотность и температура вещества значительно уменьшились, от всего пестрого разноцветья частиц остались только стабильные протоны.

В этот момент мир состоял практически из одного химического элемента — водорода. Из этого же элемента вселенная состоит в основном и сейчас, приблизительно 20 миллиардов лет спустя.

Какие же сверхнеобычные условия понадобились для переработки в течение двух десятков миллиардов лет всего одного процента свободных протонов в связанные ядерными силами нейтроны?

Заполнить всю периодическую систему элементов, имея под руками один водород, не так-то просто. По-видимому, начать пришлось с реакции слияния ядер водорода, ибо ничего другого придумать просто невозможно.

Но реакция соединения четырех ядер водорода в ядро гелия — это давно известная ученым термоядерная реакция, которая снабжает энергией наше Солнце. Термоядерный синтез идет в недрах солнечного вещества, где температура достигает десяти миллионов градусов. И даже в этих феноменальных условиях образование новых ядер происходит чрезвычайно медленно. Одно ядро гелия-4 образуется из четырех протонов только через 330 миллионов лет, а в другом термоядерном цикле — даже через 14 миллиардов лет. Эта сверхчерепашья скорость ядерных реакций на Солнце связана с тем, что даже при максимальной солнечной температуре еще очень мала вероятность преодоления сближающимися протонами сильного электростатического отталкивания.

Остывшая после расширения вселенная не могла обеспечить даже минимальных условий, необходимых для начала ядерных реакций. Их создали гравитационные силы.

Примерно 18 миллиардов лет назад в тех участках пространства, где масса вещества случайно превысила некоторую критическую величину, начали формироваться первые звезды. Сжимая вещество, гравитация могла разогреть водородный газ до необходимой температуры в несколько миллионов градусов. Силы тяготения разожгли термоядерный костер прямо в центре гигантского «резервуара» с водородным топливом. И звезда превратилась в пылающую печь, в которой водород, сгорая, преобразовывался в гелий.

Водород и гелий — два самых легких вещества, первые ступеньки в системе элементов. И только из этих двух ядер предстояло создать еще девять десятков более сложных конфигураций из нуклонов.

Говорят, лиха беда начало. Как только было положено начало синтезу элементов, так гравитационные и ядерные силы, по-видимому в полном согласии друг с другом, повели это сложное дело дальше. Достаточно было чуть-чуть выгореть в сердцевине звезды водороду и упасть давлению, как новое гравитационное сжатие поднимало температуру печи еще выше, до 100 миллионов градусов. А при такой температуре роль топлива играл уже сам новоиспеченный гелий. Ядра гелия приобретали энергию, достаточную для преодоления более высокого, чем у протона, электростатического барьера альфа-частицы. В звездной печи, которая топилась альфа-частицами, выпекался уже достаточно широкий ассортимент изделий — атомных ядер. Сливаясь между собой, альфа-частицы создавали ядра углерода. Углерод, захватывая ядро гелия, превращался в кислород. А кислород, проделывая то же самое, оборачивался неоном. И наконец, при температуре, доведенной гравитационным сжатием до миллиарда градусов, в топку шел уже углерод.

Но ядерная реакция «сгорания» — соединение ядер углерода, совсем непохожа на сгорание угля в топках электростанций. На углеродном топливе при ядерных реакциях выпекались уже такие «пироги и пышки», как ядра магния, кремния и всех других элементов, вплоть до железа.

Дальнейшее присоединение альфа-частиц или протонов только портило «железное» ядерное тесто, и оно разваливалось прямо в момент выпечки. Таблица химических элементов могла бы так и остаться заполненной лишь наполовину, если бы, к счастью, в недрах раскаленной звезды не накопилось достаточное количество нейтронов. Сложные ядра оказались как бы погруженными в ванну из этих частиц.

Захватывая нейтроны, атомные ядра, как по винтовой лестнице, начали медленно карабкаться вверх по дуге стабильных изотопов.

Дополнительный нейтрон сталкивает ядро в сторону избытка нейтронов от линии стабильности. А после бета-радиоактивного распада, при котором в связанном коллективе нуклонов возникает добавочный протон, ядро возвращается на линию стабильности с более высоким порядковым номером.

Конечно, так должно было бы происходить в идеальном случае. Множество же ядер, поглотив слишком много нейтронов или, наоборот, проявив к ним антипатию, наверняка заполняли весь материк стабильности до самых границ.

Самые тяжелые ядра, как предполагают ученые, возникают, например, при вспышке сверхновой звезды. В сверхновую превращается очень старая звезда, когда после выгорания топлива внутри ее падает давление. Резкое гравитационное сжатие приводит к взрыву оболочки. Извержение даже самого мощного земного вулкана — не более чем вспышка спички рядом с этим космическим катаклизмом. Взрыв захватывает даже самые глубокие области звезды. И долгие миллиарды лет копившиеся там сложные ядра — драгоценный продукт эволюции звезды, проносясь сквозь бушующие вокруг нейтронные смерчи, попадают вдруг в безмятежный покой межзвездного пространства.

В последние годы ученые пытаются установить, насколько процесс рождения самых тяжелых ядер зависит от вспышек сверхновых. Считается, что нейтроны во время вспышки сверхновой, подобно песку во время самума, забивающему любую трещину, быстро в большом количестве забивают сложные ядра, переводя их в разряд самых тяжелых.

А может быть, в течение длительного пребывания в звездной нейтронной ванне тяжелые элементы, как кристаллы в пересыщенном растворе, «растут» постепенно?

Оба эти варианта возникновения тяжелых элементов несколько различаются по конечному результату. Если справедлив первый, то большую вероятность образования имеют ядра платины. По второму варианту предпочтение отдается элементам вблизи свинца.


Перейти на страницу:
Изменить размер шрифта: