К счастью, с этой бедой Токамак автоматически справляется сам. Ток, текущий по плазме, окружает ее магнитным одеялом. Оно-то и касается стенок раньше плазмы. Силовые линии, пересекая толстую металлическую стенку камеры, наводят в ней ток (так называемый ток Фуко), обратный по направлению току в плазме. А противоположные токи всегда отталкиваются. Поэтому плазменный виток вместо соприкосновения со стенкой отшатывается от нее.
Долго физики пестовали плазму в Токамаке. Из года в год они все сильнее подавляли «микробы» неустойчивости, сокращавшие жизнь горячей плазмы. Упорная борьба с ее болезнями и недомоганиями привела к большому успеху: в Токамаке была выращена практически устойчивая плазма. Но, даже находясь как будто в устойчивом, равновесном состоянии, горячая плазма все равно живет недолго, так как подвержена всякого рода случайностям. Она, если так можно сказать, куда чувствительнее принцессы на горошине. Под магнитной периной в 40 тысяч эрстед она ощущает слабое дополнительное поле даже в десять эрстед, случайно оказавшееся поблизости. Кончается это плохо — возмущенная плазма выходит из состояния равновесия и попадает на стенки камеры.
Беда еще и в том, что плазма все-таки теряет полученную энергию. Между плазмой и стенками камеры — огромный перепад температуры. Несмотря на то, что сама камера тоже горячая, раскаленной до миллионов градусов плазме она кажется ледяной. Подчиняясь закону теплопроводности, горячие частицы плазмы все время стремятся передать энергию холодным стенкам. Заряженные электроны и ядра дейтерия, вращаясь вокруг силовых линий продольного магнитного поля, сталкиваются друг с другом и в результате перескакивают с одной силовой линии на другую. Так почти незаметно для магнитного поля частицы достигают стенок и отдают им немалую часть энергии плазмы.
Плазма, живущая в Токамаке, предъявляет к своему дому очень высокие требования. Он должен быть абсолютно чист. Поэтому перед каждым опытом камеру тщательно чистят: долго откачивают воздух при высокой температуре. Но даже считанные атомы тяжелых элементов, застрявшие там, сваливаются со стенок и сильно охлаждают плазму. На таком атоме ворох электронных одежд. Снимая их — ионизируя атом, — плазма опять теряет энергию.
О качестве выращенной плазмы можно судить только после того, как станут известны температура ее ионов и электронов и плотность частиц. Измерить эти величины в веществе, находящемся в четвертом состоянии, очень трудно. Как подобраться к плазме, аккуратно спеленатой двумя магнитными полями, висящей в глубоком вакууме, спрятанной от экспериментаторов в камере с двойными металлическими стенками? Она все время рядом, но существует как будто в другом мире!
И все-таки ученые нашли способы определения числа частиц в камере и измерения их температуры. Оказалось, что температура ионов в Токамаке-3 достигала 400 электрон-вольт (то есть почти 5 миллионов градусов), а электронов — 1000 электрон-вольт. (Эти результаты были подтверждены и в совместном эксперименте английских и советских физиков, в котором с помощью лазеров одновременно измерялась температура электронов и концентрация этих частиц в Токамаке.) При такой температуре некоторая часть ядер дейтерия уже имела энергию, которая давала им возможность вступать в реакцию термоядерного синтеза.
На установке Токамак-3 ученые впервые зарегистрировали длительное термоядерное нейтронное излучение устойчивого плазменного витка. В устройстве, созданном руками человека, затеплился настоящий термоядерный огонек. Плазму такого качества не получали еще ни в какой другой плазменной установке замкнутого типа.
Работа с плазмой напоминает работу терпеливого мастера над каменным кружевом. Изо дня в день искусный резчик по камню добавляет все новые и новые детали. Изо дня в день ученые все улучшают параметры плазмы.
Исследования на Токамаках начались с температуры плазмы около 100 тысяч градусов и с величины главного параметра плазмы — nτ (произведения плотности плазмы на время ее удержания) — около 107. К концу 60-х годов ученым удалось поднять температуру до 5 миллионов градусов, а nτ увеличить в 10 тысяч раз.
О результатах, достигнутых на Токамаке-3, Л. Арцимович рассказывал на III Международной конференции по мирному использованию атомной энергии. Его сообщение вызвало огромный интерес в научном мире. Неожиданно для многих Токамаки опередили все другие плазменные установки и оказались наиболее перспективными. В июне 1969 года Комиссия по атомной энергии США одобрила план создания плазменных установок типа Токамак в лабораториях в Окридже и Принстоне. Сейчас в лабораториях мира действует или строится более 30 крупных Токамаков. Восемь установок находится в Советском Союзе, остальные в США, Англии, Франции, Италии, ФРГ, Австралии, Японии, КНР.
Но цель, которая по-прежнему стоит перед учеными, можно будет считать достигнутой лишь тогда, когда заработает первый промышленный термоядерный реактор.
Останутся ли справедливыми для термоядерных реакторов синтеза выводы, полученные в опытах на сегодняшних Токамаках, работающих пока лишь на физическом термоядерном уровне (реакция идет без получения выигрыша в энергии), — вот что беспокоит физиков, работающих с горячей плазмой. Но решится это только после тщательного исследования плазмы в новых, более мощных установках. Одна из них, Токамак-10, недавно запущена в Советском Союзе.
Руководитель советской термоядерной программы академик Е. Велихов сказал: «Мы должны научиться нагревать плазму до 100 миллионов градусов (сейчас пока пройден десятимиллионный рубеж). Другое условие — плотность плазмы должна быть не менее 100 тысяч миллиардов частиц в кубическом сантиметре, то есть вдвое больше той, что мы сейчас получаем. И самое основное — время удержания плазмы: на Токамаке-10 оно равно 0,01–0,02 секунды, а для полномасштабной термоядерной реакции требуется секунда».
Плотность плазмы в Токамаке-10 будет такой же, как в будущем энергетическом реакторе. Параметр же nτ достигнет только величины 1013, которая в 10–30 раз меньше, чем должна быть в энергетическом реакторе.
Советские ученые создали проект первого демонстрационного реактора с большим диаметром тороидальной камеры, равным 5 метрам, который получил название Токамак-20. В этом, по-видимому последнем, лабораторном прототипе промышленного термоядерного реактора плазма будет нагреваться до 70–100 миллионов градусов.
Параметры и режим работы этой установки уже позволят получить столько энергии от термоядерной реакции, сколько ее будет затрачено на нагрев и удержание плазмы.
С помощью Токамака-20 предстоит решить очень важные физические и технические проблемы. Например, необходимо выяснить, не произойдет ли резкого ухудшения термоизоляции плазмы при температуре около 100 миллионов градусов; необходимо найти новые, более эффективные методы нагрева плазмы.
Если удастся решить все эти сложные задачи, то на принципе Токамаков можно будет создать энергетический термоядерный реактор — электростанцию.
— Если так трудно удерживать разреженную плазму длительное время, то нельзя ли быстро «сжигать» термоядерное топливо, как это происходит при взрыве водородной бомбы?
— В этом случае может разрушиться установка. Ученые нашли более мирный путь, попробовали взрывать маленькие порции ядерного топлива с помощью мощной вспышки когерентного, лазерного света.
Нет сомнений в том, что «эра синтеза» сменит «эру деления», как только завершится успехом борьба ученых за управляемую термоядерную реакцию. За последние 10 лет выросло и оформилось новое направление, по которому пошли ученые, пытающиеся «приручить» термоядерный огонь. Вскоре после создания оптических лазеров, с помощью которых можно было сосредоточить огромную энергию в небольшой области пространства, возникла идея быстрого зажигания термоядерной реакции синтеза короткими импульсами света лазеров.
Этот путь в принципе ведет к созданию термоядерных реакторов с импульсным режимом работы. Если в Токамаках — установках непрерывного действия — ученые добиваются увеличения времени жизни плазмы, то у специализирующихся во втором направлении совсем иные заботы.