А. Эйнштейн первым понял, что именно тянет за собой факт «неповиновения» скорости света обычным правилам классической физики. Он показал, что этот факт вместе с математическими формулами, с помощью которых хотели ликвидировать расхождение между ним и механикой Ньютона, необходимо положить в основание новой теории — специальной теории относительности. А старые правила считать приближенными и справедливыми только для объектов, движущихся со скоростью, намного меньшей скорости света.

Специальная теория относительности утверждала, что чем быстрее движется тело, тем сильнее оно сопротивляется движению, увеличивая массу. Заметить эту необычную метаморфозу можно было только при одном чрезвычайно жестком и практически, как тогда казалось, невыполнимом условии: тело должно было двигаться со скоростью, близкой к скорости света.

Новая теория была создана как будто «по заказу» микромира, хотя и несколько раньше, чем он поступил. На Земле просто не были известны объекты, движущиеся со столь высокими скоростями. И это дало повод Э. Резерфорду отметить как-то, что недостаток теории относительности заключается, по его мнению, в чрезмерной абстрактности этой теории и оторванности ее от действительности.

На самом же деле предсказанное теорией изменение массы тела, движущегося с околосветовой скоростью, уже наблюдал знаменитый Дж. Дж. Томсон. Обнаружив электрон в разрядной трубке, он измерил его массу и понял, что быстродвижущийся электрон тяжелее покоящегося.

Наконец, спустя шесть лет Э. Резерфорд обнаружил атомное ядро и раскрыл окно в микрокосмос, населенный частицами-лихачами, обладающими огромными энергиями, — мир, совершенно неподвластный законам классической физики.

Микромир стал великолепной ареной, на которой теории относительности удалось продемонстрировать всю свою глубину и всеобъемлемость.

Ни в макромире, ни в мире атомных ядер и элементарных частиц нет ничего выходящего за пределы четырех основных понятий: «пространство», «время», «материя» и «движение».

Основатели диалектического материализма К. Маркс и Ф. Энгельс еще задолго до создания теории относительности утверждали, что если время и пространство суть формы существования материи, то они должны быть теснейшим образом связаны с нею и между собой, и что непременно должна обнаружиться взаимозависимость между материей и движением.

Но тогдашняя наука о природе не давала никаких реальных подтверждений этим философским принципам. Ни один эксперимент не нарушал наивного мнения, что пространство — это «пустое вместилище, наполненное материальными телами». Ничто не мешало и вере в некое абсолютное время, не зависящее от свойств материи.

Теория относительности впервые в истории науки показала, как тесно на самом деле переплетены свойства пространства и времени.

Вскоре после того, как в журнале «Анналы физики» была напечатана статья А. Эйнштейна по специальной теории относительности, он в письме своему другу высказал очень важное соображение, что масса тела должна быть непосредственной мерой заключенной в нем энергии.

В то время уже были известны результаты тончайших экспериментов, с удивительным мастерством поставленных выдающимся русским физиком П. Лебедевым. Он доказал, что свет оказывает давление на поверхность предметов.

«Свет переносит массу, — писал А. Эйнштейн. — Заметное убывание массы должно было бы наблюдаться у радия. Такие соображения веселят и подкупают; но не потешается ли господь бог и не водит ли он меня за нос — этого я не могу знать». Шутливое опасение А. Эйнштейна не оправдалось. А свои мысли о взаимосвязи между массой и энергией он сформулировал на трех печатных страницах и опубликовал спустя несколько месяцев в том же журнале. «Зависит ли инерция тела от содержания в нем энергии?» На этот вопрос, вынесенный в заголовок, статья отвечала утвердительно.

Новые представления о пространстве и времени позволили А. Эйнштейну доказать общее положение о тесной взаимосвязи между массой — мерой инертности тел, и энергией — мерой количества их движения. Исследования микромира подтвердили выводы теории.

Навсегда была засыпана казавшаяся раньше ученым непреодолимой пропасть между материей и движением; пропасть, существование которой никогда не признавалось творцами философии диалектического материализма.

А. Эйнштейн показал, что приращение массы движущегося тела связано с увеличением его кинетической энергии. Масса неподвижного тела, так называемая масса покоя, связана с полным запасом «внутренней» энергии покоящегося тела. А запас этот состоит из энергии молекул, атомов, атомных ядер и элементарных частиц.

Формула А. Эйнштейна E = mc2 говорила о том, что при изменении массы энергия изменяется в том же направлении, но с огромным коэффициентом пропорциональности «с», равным скорости света 3 · 1010 сантиметров в секунду, возведенным в квадрат. Причем, энергия измеряется в джоулях, а масса — в граммах.

Практически невозможно обнаружить изменение массы покоя, например, у реагирующих веществ в химических реакциях, так как слишком мала порция выделяющейся энергии. «Не исключена возможность, — писал он, — что проверка теории удастся для тел, у которых содержание энергии в высшей степени изменчиво… например, у солей радия».

Гениальный ученый попал в точку! Так заранее был подготовлен тот необходимый материал, без которого никак не могло завершиться дело о «дефекте масс», а вместе с ним и решение проблемы внутриядерной энергии.

Вот где соприкоснулись две такие разные линии развития науки: непосредственное экспериментальное исследование радиоактивности и теоретическое проникновение в глубочайшие свойства пространства и времени. Они сблизились, и это дало возможность в дальнейшем широко распахнуть дверь, ведущую к познанию свойств атомного ядра.

А. Эйнштейн говорил впоследствии: «Я сосредоточил свои усилия на отвлеченной теории, в то время как Резерфорд сумел достичь глубоких познаний путем довольно простых размышлений и использования сравнительно несложных экспериментальных средств».

Э. Резерфорд и А. Эйнштейн выполнили самую первую необходимую работу для проникновения в микромир.

В сторону были сдвинуты такие колоссы, как ньютоновские представления о пространстве и времени, закон неизменности массы тел.

Знаменитая формула А. Эйнштейна заставила всех по-иному посмотреть на радиоактивный распад. Не надо было тщиться рассмотреть его сразу с двух отдельных вершин: закона сохранения энергии и закона сохранения массы. Достаточно было взойти на одну-единственную, но гораздо более высокую и удобную для обозрения вершину под названием «единый», или «обобщенный, закон сохранения массы и энергии».

С этой вершины уже можно было заметить, что потеря части ядерной энергии при радиоактивном распаде обязательно должна сопровождаться потерей и части его массы.

На первом же международном Сольвейском конгрессе, посвященном строению вещества, в 1913 году, уже после открытия атомного ядра, французский ученый П. Ланжевен впервые высказал мысль о том, что недостача в атомном весе изотопов по формуле E = mC2 связана с изменением энергии атомных ядер.

— Значит, по формуле А. Эйнштейна можно найти запас энергии ядра, соответствующий величине «дефекта массы»?

— Недостача в массе означает потерю энергии, а не ее запас. Залог существования каждой упакованной из отдельных составных частей системы, в том числе и ядра, — энергия, выделяемая при образовании системы.

— Из каких же запасов черпает энергию радиоактивное излучение?

— Тяжелые нестабильные ядра имеют меньший «дефект масс», чем более плотно упакованные ядра среднего веса. Энергия, соответствующая разнице между этими недостачами, и есть тот заряд, который делает тяжелые ядра нестабильными и при случае взрывает их, сообщая большую скорость частицам радиоактивного излучения.

Понять, почему атомные ядра облагаются налогом за право существования, самим физикам удалось только после того, как они разобрались в структуре ядра.


Перейти на страницу:
Изменить размер шрифта: