Любой, даже самый беглый, экскурс в сферы интересов современной физики не может обойти вниманием проблемы получения и использования энергии. Вспомним, например, работы, связанные с созданием эффективных фотоэлементов, которые могли бы стать основой наиболее чистой солнечной энергетики. Долгое время КПД фотоэлементов составлял около 5 процентов, затем его подняли до 8—10. В Ленинградском физико-техническом институте созданы и разрабатываются многокомпонентные гетероструктуры, в которых этот КПД равен почти 30 процентам, а в перспективе достигнет 40. Кроме того, усилия ленинградских физиков направлены на создание фотоэлементов не из кристаллического, а из более дешевого аморфного кремния.

Все это фундаментальные работы, глубокие исследования в области физики твердого тела, но цели у них вполне конкретные — электростанции, например, в пустынных районах, где с площади в несколько квадратных километров снимается энергетический «урожай», достаточный для среднего города. Крупномасштабная солнечная энергетика многим специалистам представляется делом далекого будущего. Однако есть область, где уже сегодня широко используются солнечные электростанции, созданные на основе достижений физики полупроводников. Это установки, обеспечивающие электропитание космических аппаратов, и прежде всего долговременных орбитальных станций, телевизионных ретрансляторов, межпланетных лабораторий.

Размышляя о солнечной энергетике, мы неизбежно затрагиваем экологические аспекты потребления и производства энергии, о которых сейчас так много пишут во всем мире. Здесь, видимо, нужно выделить две главные проблемы. Одна из них состоит в определении того количества энергии, которое потребуется человечеству, и того количества, которое можно использовать без опасности для окружающей природной среды. Вторая проблема связана со способами добывания энергии, с использованием таких ее источников, которые не оказывали бы недопустимо вредного влияния на нашу среду обитания.

Вопрос о количестве потребляемой энергии на первый взгляд может показаться неуместным — какая вроде бы разница, сколько мы будем топить печей, зажигать электрических лампочек или сколько километров будут покрывать наши самолеты, поезда и автомобили? Земля находится как бы в холодильнике; она окружена ледяным космосом, и даже августовским днем температура за бортом реактивного самолета, летящего на высоте всего 10 километров, около минус 40 градусов. И сколько бы тепла ни выделяли все наши механизмы, оно ведь должно быть безболезненно поглощено бездонным космическим радиатором!

Но вот оказывается, что для планеты такого типа, как наша Земля, имеющей атмосферу, величина выделяемого тепла, которое определяется общим количеством потребляемой энергии, очень сильно влияет на тепловой режим тех самых областей, где живет и работает человек. Причем влияет не столько непосредственно, сколько через сложный усилительный механизм, главную роль в котором играет все тот же парниковый эффект. Сущность его не раз описывалась в печати, и я лишь скажу, что на поверхности Венеры в основном из-за сильного парникового эффекта температура достигает плюс 500 градусов Цельсия — для земной жизни малопривлекательная перспектива. Однако именно ее и нужно иметь в виду, развивая земную энергетику. Ведь сравнительно небольшой подъем температуры, связанный с чрезмерным производством и потреблением энергии, может привести к некоторому увеличению плотности облачного слоя, и за ним последует лавинообразное повышение температуры из-за парникового эффекта, который сам себя усиливает, повышая плотность облаков.

Если для оценок всеобщего потребления энергии пользоваться традиционными единицами измерения — калориями, джоулями или киловатт-часами, то придется оперировать очень большими и потому не очень наглядными числами — многими миллионами миллиардов и даже миллиардами миллиардов. Поэтому в мировой литературе для глобальных оценок и прогнозов часто употребляют новую единицу измерения, сокращенно обозначенную буквой Q и связанную со «старыми» единицами таким соотношением: Q — 2,5-1017 килокалорий = 1021 джоулей = 3•1014 киловатт-часов тепловой энергии. Чтобы представить то количество энергии, которое стоит за единицей Q, приведем такой пример: всего 0,3 Q тепла понадобилось бы, чтобы вскипятить все Азовское море; приблизительно столько же потребляет энергии все население планеты в год, а по прогнозам, годовое потребление энергии в 2000 году достигнет 0,8 Q; эксперты Десятой международной энергетической конференции оценили все геологические запасы угля примерно в 240 Q, запасы нефти и газа примерно в 60 Q (разведанные запасы примерно в 8—10 раз меньше); согласно оценкам тех же экспертов солнечное излучение приносит на Землю в год примерно 2000 Q.

Сопоставление приведенных данных может породить чувство полной успокоенности: мол, человечеству ни сейчас, ни в будущем не грозят неприятности типа парпикового эффекта или иные беды, связанные с перегревом планеты за счет чрезмерного производства энергии нашим индустриальным обществом.

Действительно, если сравнить потребляемую, а значит, и производимую в наше время энергию 0,3 Q в год с 2000 Q Солнца, то окажется, что человек вносит в тепловой баланс планеты всего чуть больше сотой доли процента. Величина эта вряд ли может испортить более или менее стабильно работающую природную тепловую машину.

Сегодня в развитых странах на каждого человека приходится в среднем 4—7 киловатт мощности. Эти цифры — очень важный показатель производства материальных благ, они говорят о том, насколько энергично помогают нам разного рода машины, сколько энергии потребляют фабрики и заводы, чтобы обеспечить людей обувью, одеждой, телевизорами, удобрениями для выращивания богатых урожаев и многим другим.

Можно ориентировочно прикинуть, чему равна средняя мощность самого человека, когда он, скажем, выполняет достаточно тяжелую физическую работу. Она равна примерно 2 ваттам. А средняя мощность помогающих ему машин, еще раз напомним, — 4—7 киловатт. Это значит, что на одного работающего человека приходится 2—3 тысячи тепловых, электрических, механических и иных «железных» работников.

Общее энергопотребление в ближайшие десятилетия будет расти. Но по поводу средней потребляемой мощности мнения разных экспертов сильно расходятся, что вполне объяснимо: прогнозирование этого показателя — проблема не только и даже не столько техническая, сколько социальная. Чаще других называют две возможные граничные величины, при которых произойдет стабилизация роста средней потребляемой мощности, — минимальную 10 киловатт и максимальную 20 киловатт. Причем предполагается, что такая стабилизация произойдет где-то в конце следующего столетия, когда население планеты достигнет 11 миллиардов человек. Исходя из этих прогнозов и имея в виду их условность, можно подсчитать максимальную энергию, которую будет производить человечество в конце будущего столетия, — она составит около 7Q, то есть 0,3 процента от получаемой планетой солнечной энергии. Допустима ли такая цифра? Не угрожает ли она установившемуся температурному равновесию? Не вызовет ли серьезных климатических катастроф?

Подобные вопросы в последнее время интенсивно обсуждаются, к ним приковано серьезное общественное внимание, но, судя по всему, удовлетворительного ответа пока нет. Потому что таким ответом должно быть допустимое количество энергии, которое можно производить без опасений. Причем величина эта должна быть абсолютно надежно обоснована, ошибка здесь недопустима — планета у нас одна, и с ней нельзя производить рискованные эксперименты.

Сейчас проблема пределов энергопотребления исследуется на высоком теоретическом уровне, в ее решение включились квалифицированные математики и физики, вместе с метеорологами они строят математические модели сложнейшей машины, «детали» которой Солнце, разогреваемая Солнцем и изнутри Земля, океаны и материки, льды, дожди и ветры, многослойные облачные массивы. Но если вопрос о том, сколько энергии может производить человечество, еще нужно обсуждать, то вопрос о том, каким способом должна добываться эта энергия, уже сейчас достаточно ясен. Во всяком случае, понятно, что то огромное количество энергии, которое потребуется нашей планете уже в первые десятилетия следующего века, нельзя будет получать основным применяемым ныне способом — сжигая органическое топливо, то есть уголь, газ, нефть.


Перейти на страницу:
Изменить размер шрифта: