После инсулина замахнулись на интерферон — белок, который в живом организме подавляет размножение вирусов, обезвреживая их в клетке хозяина. Изучать его непросто хотя бы потому, что его ничтожно мало в клетках. Кроме того, интерферон вырабатывается клеткой только в ответ на ее заражение вирусом. При этом надо помнить, что интерферон видоспецифичен, для каждого организма свой. Как же в таком случае быть с человеческим?
Надо иметь клетки человека, клеточную культуру, которая способна давать интерферон. Выбрали кровь, а точнее лейкоциты, которые, когда их заражают вирусом, вырабатывают интерферон, и стали его выделять из этих клеток. Такой метод получения интерферона сейчас широко применяют во всем мире, разработан он и в нашей стране, в Институте эпидемиологии и микробиологии имени Н. Ф. Гамалеи Академии медицинских наук СССР.
Все, казалось бы, хорошо, но ученые подсчитали: чтобы получить одну лечебную дозу интерферона, надо взять примерно два литра донорской крови. Другими словами, чтобы вылечить всех больных вирусными заболеваниями, наверное, не хватит крови всего человечества.
Проблема интерферона стала еще более острой после того, как удалось показать, что этот белок в высоких концентрациях эффективен против многих вирусных заболеваний, включая грипп. Сенсацию в мире вызвало то, что на ряде примеров была обнаружена его эффективность против некоторых форм рака. Не путь ли это к решению проблемы? Если считать, что многие формы рака имеют вирусную природу, это не так уж нелогично. Обольщаться, конечно, нельзя, но есть над чем подумать...
Значит, интерферон необходим. И ученые включились в борьбу за получение этого белка на путях генетической инженерии. В принципе технология его получения та же, что и инсулина, только теперь надо из лейкоцитов человека выделить не сам интерферон, а его ген, и уже этот ген встраивать в кишечную палочку или дрожжи. Другой путь — синтезировать ген химически, что сделать труднее, чем в случае с инсулином, поскольку интерферон имеет гораздо более сложную структуру. Она была расшифрована лишь в 1980 году, и не прямым путем (белок был недоступен для прямого анализа), а через генетическую копию. Когда стала известна структура, появилась возможность начать химический синтез.
В нашей стране работа идет по обоим направлениям. Нельзя пока сказать, что задача решена. Но ген интерферона уже получен, и программа работ близка к завершению.
Эти два примера показывают огромные возможности генетической инженерии. Сейчас задача тщательной медицинской оценки генноинженерного препарата выдвигается на первый план.
Создание микроорганизмов с желаемыми свойствами стало делом привычным. Они сравнительно легко воспринимают любые гены, растут и синтезируют чужие белки. Процесс этот можно оптимизировать — искусственная система довольно легко поддается воздействию экспериментатора, и можно в сотни раз повышать выход одного какого-либо конкретного белка. Но надо всегда иметь в виду, что консервативность такой системы не столь велика, как у сложившегося организма, который оттачивался веками эволюции. Следовательно, новые организмы требуют большего внимания.
Это направление генной инженерии мы считаем одним из главных в биотехнологии, с прямыми выходами, наиболее перспективным для медицины.
Но есть и другие. Например, использование культур клеток. Это также биотехнология, то есть технология выращивания культуры клеток животных или растений. Естественно, проще выращивать их — подобно тому, как это делается с микроорганизмами — в ферментерах, чем выделять из организма, даже если это животные клетки, а не клетки человека.
Главное, что здесь определилось сегодня, — возможность практического использования последних достижений иммунологии. Известно, что организм для борьбы с любым чужаком, будь то микроб или вирус, выделяет специфические белки — антитела или иммуноглобулины. Такая защитная клетка иммунной системы, как лимфоцит, вырабатывает универсальные антитела, действенные против любых агентов, какие только можно себе представить. Данное свойство организма используется в медицине: в организм вводится убитый вирус, в ответ на него вырабатываются необходимые антитела, и организм подготавливается к встрече с живым вирусом.
А можно ли создать такую клетку, которая продуцировала бы только один конкретный тип антител против одного конкретного агента, вторгшегося в организм? Оказывается, можно. Это одно из последних достижений сегодняшней иммунологии: путем гибридизации клеток лимфоцитов с некоторыми другими клетками получают гибридные клетки — гибридомы, способные вырабатывать весьма специфические антитела против конкретных возбудителей, и их можно использовать для лечения. Речь идет о создании качественно новых «лекарств». Сегодня во всем мире, в том числе и в нашей стране, уже получены гибридомы различного типа. Теперь необходимо наладить их промышленное производство для борьбы с наиболее опасными агентами. Но и на этом пути предстоит решить еще немало задач...
Впечатляющие результаты получены советскими учеными при выращивании растительных клеток. Удалось показать, что, если поставить такую клетку в определенные условия, она может дать начало целому растению, а ведь еще недавно считали, что клетки строго специализированы. Уже стало реальностью выращивание культуры клеток женьшеня, из которых выделяют ценнейшее вещество корня женьшеня — паноксазин. Наша промышленность производит тонны такой культуры, а старатели приносят в год, как правило, 150—200 килограммов. Сравнение явно в пользу биотехнологии... Сейчас испытания проходят китайский лимонник и целый ряд других растений. В принципе таким способом можно выращивать любое растение, которое вырабатывает полезные человеку вещества.
Можно брать клетки в точке роста растения (в силу биологической специфичности они всегда свободны от вирусов) и размножать их в стерильных условиях. Получение безвирусного посадочного материала — одна из центральных проблем в растениеводстве. Но не менее важно это и для медицины, использующей лекарственные травы, — такими растениями легче управлять, они дают значительно больший выход полезной для человека продукции.
Еще одно направление биотехнологии, можно сказать, традиционное — микробный синтез физиологически активных соединений, кормовых белков. Так получают каратиноиды, витамины. В нашей стране создана индустрия, производящая белок для добавления в корм животным. Таким же способом можно получать и ценнейшие белки, в которых ощущается дефицит в рационе человека, сбалансировать пищу людей по аминокислотному составу. Для этого надо менять сырье. Сначала микробы выращивали на нефти, затем на чистых ее составляющих — парафинах, теперь выясняется, что лучше использовать природный газ или метиловый, еще лучше этиловый спирт. А можно, наверное, найти и более мягкий агент, из которого с помощью микробов можно получать белки, совершенно свободные от каких-либо примесей, полностью усваиваемые животными и человеком.
Наконец, важная ветвь биотехнологии — использование в медицине иммобилизованных ферментов, в частности, для борьбы с атеросклерозом и тромбозами. Такие работы успешно проводятся, например, во Всесоюзном научном кардиологическом центре АМН СССР совместно с МГУ. Берут фермент, «иммобилизуют», присоединяя его с помощью ковалентного пришивания к полимеру, затем, используя законы иммунологии, направляют высококонцентрированный препарат в строго заданное место в организме, например в пораженный кровеносный сосуд. Это сложнейшая биотехнологическая операция, но она оказалась возможной. Мне кажется, здесь во многом будущее фармакологии.
Вообще будущее медицины тесно связано с биологией.
Если раньше поиск лекарственных веществ был целиком эмпиричен, то есть практика доминировала над теорией, то сейчас создание многих препаратов — результат направленного поиска. (Пример — пенициллин, открытый случайно, когда обнаружились целебные свойства плесени и было выделено действующее начало. Но как только установили его структуру, исследования стали целенаправленными.)