И вдруг появилось электричество — совершенно новое явление, которое понять без помощи химии невозможно. Оказалось, что существуют положительные и отрицательные электрические заряды, движение которых подчиняется определенным законам, что частица химического вещества перемещается в зависимости от того, какой заряд — положительный или отрицательный — она несет. Отталкиваясь от полюса с подобным себе знаком, частица вещества быстрее или медленнее (здесь имеет значение величина полученного заряда) движется к полюсу с противоположным знаком. Так появилась возможность управлять движением заряженных частиц вещества, скоростью этого движения, регулировать направление движения. То есть там, где действовало электрическое поле, наступил определенный порядок.

Все, наверное, знают, что хромирование и никелирование выполняют электрохимическим путем, но не всем известно, что до появления электрохимии ту же работу выполняли сугубо химическим путем.

В наши дни прикладная электрохимия объединяет два очень крупных направления: проведение химических реакций при помощи электричества и получение электрической энергии за счет химических превращений. И в том и в другом направлениях работают мощные производства, давая продукцию, без которой немыслимо наше нынешнее существование, так же как и будущий прогресс.

Остановлюсь на некоторых особенностях электрохимических реакций, которые являются основополагающими как в науке, так и в практике и которые необходимо знать для того, чтобы понимать суть происходящего.

Если обычные химические реакции (окислительные или восстановительные) протекают как бы в одной фазе и зависят от переменных химической кинетики — от концентрации раствора, температуры, — то электрохимия позволила вести процесс как бы в двух стадиях. Она дала процессам новые рычаги управления, поставила их в зависимость от величины электродного потенциала, природы материала электрода и состояния его поверхности. Именно эти рычаги и позволили исследователям и технологам управлять ходом процессов: вести их в намеченном скоростном режиме, с достаточной точностью направлять движение частиц вещества. Это очень важные особенности процесса, ибо они почти полностью исключают рассеивание энергии в окружающую среду и потому являются экологически безопасными. В связи с тем, что при таких условиях энергия не рассеивается, а вся выполняет определенную работу, коэффициент полезного действия процессов исключительно высок. Кроме того, электрический ток чрезвычайно сильный окислитель и восстановитель и потому позволяет вести процессы с такой глубиной, которая недостижима сугубо химическим путем.

Такие вот особенности электрохимии и способствовали широкому использованию достижений этой науки в промышленности.

Было бы, однако, неверным полагать, что, едва родившись, новая наука сразу же стала завоевывать все новые и новые позиции. Это, конечно, не так. Долгое время исследователи шли путем проб и ошибок (кстати, это случается и сейчас), когда теоретические предпосылки далеко не стопроцентно находили подтверждение на практике, когда расчеты показывали одно, а на практике получалось другое.

Дело в том, что классическая наука не умела строить сложных моделей будущих практических процессов. Она могла с достаточной ясностью рассказать о том, что происходит в электролите, когда через него пропускают электрический ток, но она не могла объяснить, какие процессы совершаются в это же время на поверхности электродов, она не могла объяснить кинетику этих процессов. Такой теории не существовало, хотя в гипотезах недостатка не было.

Большой вклад в развитие электрохимии внесли отечественные ученые. Были сформированы мощные научные школы в Москве и Ленинграде, Свердловске и Киеве. Во главе их стали крупнейшие ученые и исследователи В. Кистяковский, П. Федотьев, А. Писаржевский, Е. Шпитальский, А. Фрумкин и О. Есин. Работы именно этих школ дали мощный импульс развитию не только отечественной, но и мировой науки. Главы школ и их многочисленные ученики и последователи сосредоточили свое внимание на ключевых проблемах теоретической электрохимии: изучении особенностей строения границы раздела металла с раствором электролита и исследовании самого механизма и кинетики электродных реакций. Без ясного понимания того, что же происходит на границе электрода и электролита, невозможно было продвижение вперед, невозможно было прогнозировать с достаточной надежностью, как будут развиваться и протекать электрохимические процессы, а следовательно, и строить надежные технологии.

В результате многочисленных исследований и экспериментов постепенно стало проясняться многое из того, чему классическая электрохимия не давала достаточного объяснения, в частности, появилась ясность в том, как протекают процессы, происходящие на границе электрода и электролита. А. Фрумкиным впервые в мировой науке было введено понятие о нулевом потенциале. Именно это понятие и явилось как бы оценочным критерием поведения электрода, раскрывало его адсорбционную и кинетическую сущность.

Нужно отметить, что развитие теории в этот период сильно затруднялось из-за несовершенства экспериментальной техники. Многое не поддавалось измерениям во время экспериментов. Приборы и аппаратура «не успевали» срабатывать, не обладали нужной чуткостью и избирательностью.

Ситуация стала меняться в самое последнее время, когда появилась перспектива использовать в этих исследованиях оптические методы: спектроскопии молекул в двойном слое, электроотражения, эллипсометрии. Это позволило перевести исследования на более тонкий уровень, получить данные о микроструктуре, начать серию экспериментов в области реально действующих систем, а не тех идеальных, с которыми имела дело классическая электрохимия.

В последние десятилетия получены важные доказательства того, что электрохимические реакции, как правило, имеют и химические стадии, которые нередко предшествуют моментам переноса заряда через поверхность раздела электрод — электролит. Химические стадии и являются определяющим фактором протекания процесса во многих случаях.

Эти и другие исследования позволили вскрыть глубинную сущность электрохимических реакций, лучше понять механизм процессов. Они еще более укрепили нашу уверенность в том, что глубоко правы были Д. Менделеев и его ученики, когда говорили, что для глубокого понимания электрохимических явлений необходимо разобраться в химической их сути, непременно ее учитывать. Сейчас можно уже с большой определенностью утверждать, что прогресс в развитии теоретической и прикладной электрохимии в ближайшее десятилетие будет идти именно в русле этого менделеевского направления.

По мере расширения и углубления наших знаний в области теории все более развивается и прикладная электрохимия. Здесь, наряду с традиционными производствами, возникают производства новые, основанные на новых знаниях. Впрочем, и традиционные технологии не остаются стабильными, они совершенствуются, приобретая новые качества.

В этой связи мне хотелось бы коснуться состояния дел в таком направлении электрохимии, как защита металлов от коррозии. Ведь именно об этом сказано в «Основных направлениях экономического и социального развития СССР на 1981 — 1985 годы и на период до 1990 года»: «Разрабатывать и внедрять высокоэффективные методы повышения прочностных свойств, коррозионной стойкости, тепло- и холодостойкости металлов и сплавов, металлических конструкций и труб...»

Благодаря целенаправленным работам советских коррозионистов удалось прояснить многие теоретические неясности, существовавшие прежде. Появилась возможность смоделировать научно обоснованные процессы, которые имеют большую практическую ценность. Электрохимическая теория коррозии вскрыла все закономерности процессов и сумела указать пути повышения сопротивляемости металлов, улучшения способов защиты. Иными словами, нам теперь совершенно ясен механизм самого явления, а это, в свою очередь, позволило найти и новые способы борьбы, создать оригинальные методы защиты.


Перейти на страницу:
Изменить размер шрифта: