Сейчас Э. Грин вместе с группой высококлассных специалистов поставил перед собой новую задачу — преодолеть барьер 1000 миль в час. Сделано это будет с помощью ракеты, уложенной на колеса.
Подробные сведения о разработке, стоимость которой составит более 12 млн. фунтов (20 млн. долларов), полтора года держались в строжайшем секрете. И лишь осенью 2008 года министр Великобритании по вопросам науки лорд Дрэйсон счел возможным подтвердить существование проекта и подчеркнуть, что «одной из главных целей создания данной машины является привлечение внимания британской молодежи к техническим наукам. Это поможет развитию высоких технологий в стране»…
Одновременно с работами по созданию рекордного реактивного болида его создатели подыскивают соответствующую трассу. Инженеры рассматривают возможность провести заезд в Южной Африке, США или Австралии, где на дне высохших соляных озер есть возможность подготовить идеально ровную дорогу длиной километров в тридцать.
Компьютерный рисунок «Бладхаунда» и схема его обтекания воздушными потоками.
А ЧТО У НАС?..
Идея построить советский сверхзвуковой автомобиль родилась в стенах Харьковского автодорожного института еще весной 1968 года. А через полтора года новость о том, что «русские стремятся создать самый быстрый в мире автомобиль», облетела планету.
Между тем, на самом деле болид ХАДИ-9 был лишь коллективным дипломным проектом студентов Сергея Шерстобитова, Александра Заговорова, Владимира Сегодина, Анатолия Корлякова и Анатолия Пурдыка.
Последняя разработка харьковчан, призванная штурмовать «звуковой барьер» — ХАДИ-31 2006 года.
Болид ХАДИ-9 1959 года выпуска.
Ребята в какой-то мере опирались на опыт старших товарищей. Еще в 50-е годы в лаборатории скоростных автомобилей Горьковского автозавода была создана скоростная машина с турбореактивным двигателем от истребителя МиГ, на которой гонщик М. Метелев достиг скорости 200 км/ч. В начале 60-х годов мастер спорта, неоднократный чемпион страны и мира Э. Лорент начал было строить машину, способную разогнаться до 900 км/ч, но осуществиться его идеям было не суждено.
Машина харьковчан, дорабатываемая несколькими поколениями студентов, была оснащена авиационной газовой турбиной с тягой 5500 кгс, гидравлической подвеской колес, каркасной рамой кузова. Ее длина 11 м, высота 1,10 м, масса — порядка 2500 кг. Торможение должно было осуществляться за счет парашютов и воздушных заслонок, а также реверса самой турбины.
В 1978 году многолетний труд был завершен. Новую авторакету успешно испытали на бетонке скоростной трассы в Чугуеве, а потом она была показана на очередной выставке НТТМ в Москве. Но «оседлать звук» нашим конструкторам не удалось до сих пор.
Правда, последнее время снова начались разговоры о создании в нашей стране рекордного автомобиля, способного развить скорость порядка 1500 км/ч! Но кто будет спонсировать этот проект и когда от слов перейдут к делу, пока неизвестно.
ВЕСТИ ИЗ ЛАБОРАТОРИЙ
Клей для… речного рака?
Клеить иной раз лучше, чем шить или скреплять детали гвоздями, болтами, скобами. И потому с незапамятных времен люди ищут способ склеивать самые различные материалы быстрее и надежней.
По-видимому, первый достоверно подтвержденный исторический факт использования клея — творение неизвестных художников каменного века в пещере Ласко во Франции (датируется XVIII тысячелетием до н. э.). Чтобы живопись продержалась на сырых стенах пещеры как можно дольше, художники верхнего палеолита смешивали краски с каким-то природным клеем.
Изучение керамики, имеющей возраст около 6000 лет, показывает, что уже тогда люди научились использовать клей в качестве средства для быстрого ремонта. А древние египтяне еще за 3000 лет до нашей эры широко использовали клей при производстве различных деревянных изделий и папируса. Этот опыт у них переняли греки и римляне, которые тоже оставили следы клея в истории.
Конечно, в те времена клеи были исключительно природного происхождения. Причем в иных случаях и изобретать ничего не пришлось. Вон, к примеру, гуммиарабик — клей для бумаги — имеет в своей основе смолу вишневого дерева.
Потом клеи научились варить. Давно и широко известен клейстер — клей на основе крахмала. А вспомните хотя бы традиционный столярный клей, желто-коричневые плитки которого состоят в основном из белка, вываренного из хрящей и сухожилий животных. Для более тонких работ иногда применяют рыбий клей, изготовляемый примерно по той же технологии, что и столярный, но с использованием рыбьих хрящиков.
На него, кстати, в 1750 году в Великобритании был выдан первый патент. По мере развития промышленности были запатентованы и другие клеи — костный, казеиновый.
Яичные белки и желтки добавляли не только в состав красок, чтобы они прочнее держались на сводах расписываемых храмов, но и при возведении крепостных стен. И надо сказать, многие стены на таком цементе, простояв тысячелетия, благополучно сохранились и до наших дней.
И в наши дни, когда, казалось бы, все клеи синтетические, продолжаются исследования природных клеящих соединений; специалисты снова и снова обращаются в лабораторию природы. Почему? Поясним хотя бы на одном красноречивом примере.
В офис крупной компании — производителя современных синтетических клев — пришло письмо. Сотрудники лаборатории биологического факультета Университета штата Джорджия в Атланте обращались с просьбой решить их проблему: «Мы занимаемся функциональной магниторезонансной томографией. В качестве модели для исследований мы используем речных раков, реакции которых удобно моделировать и изучать. Однако томография требует достаточно длительной экспозиции, и чтобы картинка не смазывалась, нам необходимо зафиксировать рака внутри пластиковой камеры маленького томографа — например, приклеить его панцирь в нескольких местах. Более того, необходимо зафиксировать (хорошо бы опять-таки с помощью клея) его глазные стебельки, поскольку при их движениях двигается и мозг рака. А самое главное заключается в том, что нам необходимо проводить исследования на одной и той же особи множество раз.
Таким образом, нам нужен водостойкий клей, который бы склеивал очень быстро, был бы нетоксичен и растворялся в относительно нетоксичном растворителе. Существует ли такой продукт?»
По слухам, химики компании-производителя, прочитав список требований, только развели руками: «Дескать, нет таких клеев в природе»… И ошиблись. Потому что в природе подобные клеи как раз существуют. Это доказал недавно профессор биоинженерии Рассел Стюарт из Университета Юты. Он и его коллеги заинтересовались некоторыми способностями морского песчаного червя. Этот обитатель подводных глубин строит себе жилище из песчинок и осколков ракушек, скрепляя их выделяемым им клейким веществом.
Клей этот не боится воды, совершенно нетоксичен: правда, с точки зрения заказчика он обладает одним недостатком — клеит, что называется, намертво. Поэтому придется еще поискать некий растворитель, который бы позволял освобождать того же рака из клейкого плена.