В. БЕЛОВ. Известно, что в специфических условиях не только космоса, но и, скажем, пребывания глубоко под водой, даже обычная таблетка, которая на Земле через два часа выводится из организма, может дать совершенно иной эффект. Как это учитывается?

A.ГРИГОРЬЕВ. Нашему институту более 20 лет назад была поставлена задача заниматься также и проблемами людей, которые работают на больших глубинах. В институте имеется отдел гипербарической физиологии и водолазной медицины. И мы довольно эффективно разрабатываем методы и средства, которые облегчают работу водолазов-глубоководников, позволяют диагностировать возникновение неблагоприятных расстройств…

Мы установили, что там, на глубине, многие процессы протекают совсем по-другому. И это все учитывается в наших рекомендациях.

B. БЕЛОВ. Первый космический полет продолжался 108 минут. Сейчас люди работают на космической станции по полгода, не говоря уже о рекордах пребывания на орбите, когда общее время жизни в космосе измеряется уже годами. Могли ли вы себе такое представить в самом начале? Можно ли сказать, что современная медицина в состоянии сохранить здоровье человеку, который отправится, скажем, на Марс?

О. ГАЗЕНКО. Самое удивительное, что само проникновение человека в космическое пространство, которое многими воспринимается как прыжок в неизвестность, — неправильное представление.

Человек отправился в первый полет только тогда, когда медики смогли с уверенностью сказать, что в космосе с точки зрения медицины ему ничего особо не грозит, он сможет вернуться обратно живым и здоровым. Сейчас мы накапливаем знания, которые помогут и участникам будущих межпланетных экспедиций сохранить свое здоровье.

В. БЕЛОВ. Говорят, что во многих наземных клиниках с успехом используют те наработки, которые некогда были сделаны космической медициной исключительно для космических полетов. Так ли это?

А.ГРИГОРЬЕВ. Верно, многие методики и устройства оказались полезны и для лечения некоторых болезней в чисто земных условиях. Вспомним, например, о костюме «Пингвин», который обычно космонавты применяют для коррекции распределения кровяных потоков по телу в невесомости. Те же костюмы в более чем 60 медицинских центрах нашей страны используют для лечения детей с церебральным параличом. А фирма «Звезда», где ранее изготовляли системы жизнеобеспечения для летчиков и космонавтов, ныне выпускает спецкостюмы для медицинской практики.

Более того, сами по себе разработки космической медицины привели к тому, что и земные врачи стали иначе смотреть на пациента. Если раньше он думал лишь о том, как диагностировать ту или иную болезнь и как ее лечить, то в настоящее время медики все больше начинают заботиться о здоровье здорового. То есть они стараются предотвратить болезнь, сберечь здоровье человеку еще до того, как он начал болеть.

Людям начали объяснять, какое огромное значение для их здоровья имеет образ их жизни. Установлено ведь, что лишь 20 процентов здоровья зависит от генетических факторов. Еще двадцать приходится на экологию. Только 10 процентов здоровья может обеспечить уровень здравоохранения в стране, будь то даже США, Япония или Швеция. А остальные 50 процентов приходятся на сам образ жизни человека, соблюдение им здоровых привычек или, напротив, их нарушение. И вот то, что сейчас все больше обращают внимания на этот аспект, большая заслуга в том числе и космической медицины.

ПОДРОБНОСТИ ДЛЯ ЛЮБОЗНАТЕЛЬНЫХ

Кресло для… Луны

Среди экспонатов заводского музея НПО «Звезда», занимающегося проблемами жизнеобеспечения, созданием скафандров для летчиков и космонавтов и тому подобными разработками, можно увидеть немало любопытного. Здесь и лунный скафандр, и новейшие парашютные системы, и кресло, предназначенное для… полетов.

Это ракетное кресло испытывал на орбите в 1990 году космонавт А.А. Серебров. Тогда было не очень понятно: зачем оно на орбитальной космической станции? И лишь недавно, после снятия завесы секретности, все стало на свои места. Если бы все пошло по плану, на таком кресле наши космонавты летали бы по… Луне. Официально эта разработка звалась ПРТС — пилотируемая ракетная транспортная система.

Юный техник, 2008 № 04 _10.jpg

Сегодня уже известно, что наши космонавты и конструкторы готовились к полетам на Луну весьма основательно. Был готов и испытан не только лунный скафандр, но и посадочный модуль. А луноход, между прочим, поначалу предназначался для поездок на нем именно космонавтов, а не был самостоятельным транспортным средством. Разрабатывали советские конструкторы в 60 — 70-х годах XX века и лунные ранцы. Неоспоримое их преимущество перед теми же луноходами заключалось в высокой скорости передвижения, причем над самой пересеченной местностью.

Интересно, что впервые ракетный ранец «засветился» в 1965 году, в «Шаровой молнии» — одном из фильмов о Джеймсе Бонде. Но агент 007 использовал его, конечно, в земных условиях. На Земле же, естественно, прошли и испытания его прототипов, которые показали, что запасов топлива хватает ранцу лишь на несколько кратковременных прыжков-полетов.

Иное дело — Луна. Ведь притяжение там в 6 раз меньше земного. Кроме того, нет сопротивления воздуха из-за отсутствия атмосферы. В итоге на одной заправке, как показывали расчеты, по Луне можно было пролететь 30 км — на порядок больше, чем на Земле. Причем если разработку компании Bell Aerosystems — как наименее перспективную — американцы разрекламировали в том же фильме, то вот о другой разработке Bell Pogo, представлявшей собой летающую платформу с жестко закрепленным ракетным двигателем, предпочли замолчать, планируя использовать этот аппарат при освоении Луны.

На нем не только проверялись методики посадки на Луну транспортного модуля, но и просматривались возможные варианты быстрого передвижения по самой планете огромными прыжками.

Юный техник, 2008 № 04 _09.jpg

Схема советского ракетного кресла:

1 — сопла системы стабилизации; 2 — фара; 3 — система индикации; 4 — сопло двигателя коррекции; 5 — пульты управления; 6 — сопло основного двигателя; 7 — баки с топливом; 8 — платформа; 9 — одна из посадочных опор.

Советские специалисты, впрочем, пошли своим путем. Многопрыжковую схему отклонили еще на раннем этапе исследований. Дело в том, что у наших конструкторов не было уверенности в абсолютной надежности двигателя многоразового запуска. Кроме того, возникали сложности с навигацией — ведь перед каждым прыжком приходилось бы заново прицеливаться.

Наконец, расчеты показывали, что по расходу топлива многопрыжковая схема проигрывает горизонтальным перелетам. В итоге наши конструкторы решили летать, а не прыгать.

Но и здесь возникли свои сложности. Для устойчивого полета ПРТС требовалась особая система стабилизации. Без нее тело космонавта постоянно раскачивалось бы, словно маятник. При полетах на Земле в такой системе нет особой нужды, поскольку маятниковый эффект сводится практически к нулю силами аэродинамического сопротивления атмосферы. На Луне без системы стабилизации тело должно сильно наклоняться вперед при разгоне и назад при торможении. Да и во время полета все время придется следить, как бы не опрокинуться.

В итоге была сконструирована автоматическая система стабилизации естественного для человека вертикального пространственного положения. Главный ее элемент — блок чувствительных гироскопических датчиков, следящих за положением космонавта в пространстве. В дополнение к нему была создана система малогабаритных импульсных ракетных двигателей, корректирующих положение платформы в пространстве.


Перейти на страницу:
Изменить размер шрифта: