Один из интереснейших докладов о полете на Марс прочитал космонавт Александр Калери. По его мнению, межпланетный корабль будет питаться энергией от солнечных батарей с размахом 700 м, общая продолжительность экспедиции составит два года, а пребывание экипажа из 4–6 человек на Красной планете — месяц. Реальная дата старта — 2020 год.
СЛОВАРЬ БАБУШКИ ВЕРЫ опубликован в Томском госуниверситете. Это коллективный труд 40 ученых-лингвистов, которые в течение четверти века регулярно записывали речь одного человека — крестьянки из села Вершинино Томской области Веры Вершининой.
Особенность этого словаря в том, что в нем отражены все характерные слова и выражения не писателя или государственного деятеля, а обыкновенного жителя нашей страны. Словарь бабы Веры оказался почти столь же богат, как у А.С. Пушкина — она использовала в своей речи более 20 тысяч слов.
ШАХТНЫЙ МЕТАН ПОЙДЕТ В ДЕЛО. Как известно, обычно этот газ, содержание которого составляет примерно 100 куб. м на тонну породы, представляет собой смертельную опасность для шахтеров. Взрыв метана — самая распространенная причина аварий в шахтах. И вот теперь технологи Кемеровского холдинга «Сибуглемет» начали использовать на шахте «Полосухинская» специальную технологию дегазации пластов. В итоге выработка угля становится безопаснее, а газ поступает в топки котельной самой же шахты.
ПРЕМИИ
Глубина поверхностных реакций
Нобелевская премия по химии за 2007 год присуждена известному немецкому ученому Герхарду Эртлю «за исследования химических процессов на твердых поверхностях».
Сам лауреат Герхард Эртль, почетный профессор берлинского Института Фрица Хабера при Обществе Макса Планка, считает себя… физиком. «В институте я изучал физику. И диплом защитил по физике, — сказал он. — Однако физика и химия не так уж далеки друг от друга.
В сфере моих интересов — применение в химии тех методов, которые обычно распространены в физике».
Герхард Эртль на рабочем месте.
Поверхность катализатора испещрена отверстиями для увеличения площади соприкосновения.
Будущий лауреат родился 10 октября 1936 года в пригороде Штутгарта. Здесь он закончил гимназию, вспоминая которую говорит, что порою ему там было невероятно скучно. И преподаватели попадались далеко не все такие уж замечательные. Из всех школьных предметов Герхард больше всего ненавидел… физкультуру. И когда другие мальчишки отправлялись гонять мяч, он предпочитал посидеть с книгой в руках. Причем довольно часто в его руках можно было увидеть разного рода труды по химии и физике.
В 13 лет он начал проводить химические опыты у себя дома. Мама будущего лауреата полгода стойко терпела чудовищные запахи и взрывы, но потом попросила все это безобразие прекратить. Тогда Эртль бросил химию и, переключившись на физику, стал собирать радиоприемники.
В 1955 году он поступил учиться на физический факультет Штутгартского университета, который и закончил пять лет спустя. В это же время он успел постажироваться в Сорбонне (Париж) и Мюнхенском университете. Затем он перешел вслед за своим руководителем в технический университет Мюнхена, где и защитил докторскую диссертацию.
В 1968 году Г. Эртль возглавил факультет физической и электрической химии Ганноверского университета. В 1973 году он вернулся в Мюнхен и несколько лет руководил факультетом физической химии университета Людвига Максимильяна. Именно в это время он и провел первые исследования из той обширной серии работ, которая, в конце концов, привела его к Нобелевской премии.
В 2004 году Герхард Эртль официально вышел на пенсию. Но в Институте за ним сохранился кабинет, где ученый и ныне работает практически каждый день, консультируя молодых коллег и занимаясь своими собственными делами.
У него уже множество наград и почетных званий, а также жена, двое детей, четверо внуков и две кошки.
Профессора Эртля знают во всем мире как одного из отцов катализа. Он не только придумал, как ускорить многие реакции, но и объяснил суть механизма катализации. До него было во многом непонятно, как вещество, которое само в реакции не участвует, может ее ускорить.
Один из опытов, иллюстрирующий суть катализа, выглядит так. Если в открытую колбу, содержащую концентрированный водный раствор аммиака, поместить предварительно подогретую платиновую проволоку, то невооруженным глазом видно, как она нагревается до красного каления и остается в таком состоянии длительное время.
Откуда берется дополнительная энергия для нагрева?
Оказывается, в присутствии платины аммиак взаимодействует с кислородом воздуха. Эта реакция является экзотермической, то есть идет с выделением большого количества тепла. А тепло, как известно, обычно ускоряет течение реакции.
Катализаторы могут быть как твердыми, так жидкими и газообразными. А в некоторых случаях имеет место и аутокатализ, когда процесс ускоряется одним из продуктов реакции. Наблюдать самопроизвольный катализ можно, например, смешав растворы перманганата калия (обычной марганцовки) и сульфата калия. Первоначальная малиново-красная окраска смеси вскоре начинает меняться, причем все быстрее. А причиной тому образующиеся в результате реакции ионы Мn2+. Многие реакции в растворах ускоряются ионами гидроксония Н30+ (в кислой среде) и ионами ОН— (в щелочной).
Еще существуют гомогенный и гетерогенный катализ, катализационный крекинг… В общем, не случайно на эту тему написаны толстенные тома, а без катализаторов немыслимы многие процессы современного производства. Здесь и борьба с выхлопными газами автомобилей, и нефтепераработка, и производство полупроводников. Даже парниковый эффект и разрушение озонового слоя во многом связаны с каталитическими процессами, протекающими на границе твердых и газовых фаз.
Начало многим из вышеперечисленных исследований и положил профессор Эртль. По словам сотрудника Института катализа СО РАН, доктора химических наук Владимира Городецкого, который несколько лет работал совместно с Эртлем, именно работы немецкого ученого и позволили разобраться, как именно протекает катализ.
К реакциям, оказавшимся в поле зрения исследователя, относится, в частности, и синтез аммиака на поверхности железа, а также окисление окиси углерода на палладии. Первый из упомянутых процессов применяется в производстве искусственных удобрений.
Как известно, растения не умеют усваивать азот непосредственно из воздуха. Исключение составляют лишь бобовые, в которых проживают бактерии, умеющие «переваривать» азот и передавать его своим хозяевам уже в связанном виде. Другие же растения приходится периодически подкармливать, например, классическим азотным удобрением — аммиачной селитрой.
Получают же это удобрение на химкомбинатах, используя в качестве основы реакцию Габара-Боша. Она названа так по именам двух нобелевских лауреатов, которые разработали еще в первой половине прошлого века метод синтеза аммиака путем фиксации азота из воздуха. И работы Эртля тоже восходят к 60-м годам XX века, когда он начал изучать и совершенствовать этот процесс.
Окисление же окиси углерода на палладии с целью превращения СО в СО2 необходимо для обезвреживания угарного газа, возникающего при сжигании топлива автомобильным двигателем.