Начали Егор с дедушкой с самого простого — для проверки расчетов выкроили из старых полиэтиленовых пакетов и сварили оболочку своего первого теплового аэростата. Конечно, это была модель, воздух для полета которой нагревался обычным… туристским примусом. Но модель вполне приличных размеров: с объемом оболочки около 5 куб. м и проектной грузоподъемностью до 1 кг.
— Тепловой аэростат — это, вообще-то говоря, огромный пузырь горячего воздуха, накрытый легкой оболочкой, — продолжал свой рассказ Егор. — Если выпустить немного этого воздуха или дать ему остыть — аэростат начнет снижаться, если еще подогреть — пойдет вверх…
Поскольку воздух все равно постепенно остывает, то в полете приходится время от времени включать горелку для его подогрева. И тогда Максим задумался: как можно уменьшить потери тепла? И придумал, что, если пузырь горячего воздуха накрыть не легкой оболочкой, а толстой, аэростату будет трудней держаться в воздухе. Но зато тепло будет лучше сохраняться, и горелку можно будет включать пореже, а значит, расходовать меньше горючего. Да и горелку можно будет взять поменьше, полегче… И получается, что выигрыш этот больше, чем вес второго слоя оболочки. Тем более что внутренний слой не обязательно должен быть таким же красивым и прочным, как внешний, к которому крепится гондола и рекламные полотнища.
От внутреннего слоя требуется только одно: отгородить внешний слой от жара горелки. А воздушная прослойка между ними будет препятствовать утечке тепла, в точности как слой воздуха между стеклами в оконной раме.
Сказано — сделано. Когда Егор опробовал конструкцию с двойной оболочкой, оказалось, что та же 5-кубовая модель после добавления еще одной оболочки увеличила свою грузоподъемность в 5 раз!
Сделав одно усовершенствование, Егор с дедушкой на том не остановились. Обычный аэростат ведь летит по воле ветра. А нельзя ли все же хоть как-то направлять его движение?
В результате некоторых раздумий на свет появился третий вариант аэростата — с «ушами». Суть этого изобретения такова. В оболочке аэростата делается несколько отверстий, обычно герметично прикрытых клапанами. Нужно вам полететь, например, вправо, оттопыриваете на оболочке левое «ухо». Клапан приоткрывается, из оболочки начинает бить влево струя воздуха. В итоге образуется реактивная сила, которая увлекает оболочку вправо…
Таковы первые результаты работы за год Егора Максимова и его дедушки, выступающего в данном случае в роли научного руководителя. Теперь они вместе работают над конструкцией теплового дирижабля, который будет управляться по радио.
Егор Максимов (в центре) своей работой доволен.
— Вообще при работе над проектом мы хотим создать серию летательных аппаратов, которые можно использовать для перевозки грузов, рекламы, патрулирования, сельского хозяйства, развлечения и спорта, — сказал мне Егор на прощание. — Наши аэростаты и дирижабли будут доступны, потому что мы разработаем простую технологию их изготовления, возьмем доступные материалы, будем использовать бытовые устройства и приборы для их запуска…
Что из этого получится, мы с вами, наверное, узнаем на следующем смотре НТТМ.
Егор Максимов — один из самых юных участников нынешней экспозиции. Другие участники смотра постарше, а потому работы их сложнее.
Например, Дмитрий Удалов, десятиклассник специализированного лицея при Московском государственном индустриальном университете, рассказал мне об одном учебном пособии, которое создано им вместе с С.Лифатовым и А.Половниковой под руководством С.Д.Леготина.
Как известно, лучше один раз увидеть, чем сто раз услышать. А потому объяснения учителя становятся намного нагляднее, когда подтверждаются демонстрацией какого-нибудь опыта. Ну, а поскольку живем мы с вами уже в XXI веке, то физприборы из дерева и металла все чаще заменяют «виртуальные», электронные комплексы, входящие в состав школьных лабораторных практикумов по физике.
Проще говоря, Дмитрий вместе с друзьями не только создали модель, демонстрирующую увеличение центробежной силы при возрастании скорости вращения — это наглядно видно по увеличению отклонения грузика от вертикальной оси, — но и разработали компьютерную программу, которая позволяет очень быстро обрабатывать результаты измерений, строить графики и выдавать готовые отчеты о проделанной работе.
Таким образом можно теперь выполнять «лаборатории» не только по механике вращательного движения, но и изучать волновые процессы в акустике, интерференцию в оптике.
Дмитрий Удалов показывает устройство для изучения центробежных сил.
Сколько ни играй в азартные игры, все равно в выигрыше останется казино или партнеры-мошенники. И, тем не менее, все еще находятся люди, которые полагают, что смогут противопоставить системе игровых автоматов, казино, ловкости рук мошенников свои игровые навыки и изобретенную собственной головой систему.
— О мошенниках говорить не будем, — сразу сузила рамки нашего разговора студентка Тольяттинского государственного университета Елена Борисова. — Нечистые на руку люди — тема милицейского расследования, а не научного исследования…
Елена же, как выяснилось из нашего дальнейшего разговора, попыталась применить формулы теории вероятностей к игре, в которой велик элемент случайности, — в карты (по-честному), в рулетку или даже в лотерею.
Опуская математические подробности, формулами которых был исписан весь стенд, предоставленный Лене для экспозиции, скажу об основных выводах. Выиграть, скажем, в карты у казино можно лишь в двух случаях. Во-первых, если вы счастливчик и вам однажды просто выпала удача. При этом не надейтесь: фортуна вряд ли повернется к вам лицом еще раз. Так что забирайте свой выигрыш и сразу уходите.
И, во-вторых, если у вас есть чемодан лишних денег и вы будете все время, при каждом проигрыше, все время удваивать ставки. Тогда есть шанс, что, в конце концов, вы сможете одним махом сразу отыграться. Но специалисты казино прекрасно осведомлены о такой возможности, и поэтому во многих игорных заведениях высшая планка ставок ограничена.
В остальном же, как показали расчеты, вероятность выигрыша минимальна. И «движение удачи», если можно так выразиться, на графике весьма смахивает на броуновское движение. Никакой закономерности в нем обнаружить не удается.
О своей работе рассказывает студентка Елена Борисова.
Стоило ли ради такого вывода потратить около трех месяцев напряженного труда? Именно этот вопрос я и задал Елене.
— Безусловно, стоило, — ответила она. — Во-первых, я теперь значительно глубже стала разбираться в математике и уже не боюсь сложных математических выкладок. Во-вторых, эта научная работа может затем стать темой моего диплома. В-третьих, исследования вероятностных процессов, быть может, со временем станут темой моей диссертации. Мне бы очень хотелось заняться научной работой после окончания университета…
К сказанному Еленой мне остается добавить, что мы с вами живем в вероятностном мире. И то, что сегодня кажется лишь игрой ума, завтра может стать основой алгоритма для управления ракетой или самолетом, производственным процессом или новой компьютерной игрой.