Не один десяток лет отдал таким экспедициям и Леонид Кириллович. Причем ему довелось в основном плавать, потому что его узкая специализация — морские гравиметры. Те самые, что работают в наиболее сложных условиях — ведь штиль на море бывает не так уж часто.
«Поначалу и я сам, и наши приборы страдали морской болезнью?», — вспоминает ученый. Однако со временем обрел устойчивость не только вестибулярный аппарат самого исследователя; созданные им и его коллегами приборы стали давать правильные показания даже в штормовую погоду.
Нужно же это вот для чего. Задумывались ли вы когда-нибудь, как подводные лодки находят дорогу в океане? Ведь движутся они на большой глубине, в кромешной тьме, где даже морских звезд, не говоря уж небесных, не видно. Причем зачастую пути их проходят подо льдами, вынырнуть из-под которых — большая проблема. Да и по военным соображениям делать этого не стоит — спутник-шпион или иной охотник за подводными лодками тут же засечет ее появление… В высоких же широтах магнитный компас попросту бесполезен. Куда, по-вашему, должна указывать его стрелка в районе полюса?
Вот и ориентируются подводные штурманы по изменениям гравитационного поля Земли. Но чтобы они смогли это делать, гравиметристы должны были составить подробнейшие карты гравитационного поля планеты, «проутюжив» все моря-океаны со своими приборами. Так что пришлось Железняку с коллегами совершить не один десяток морских путешествий, добираясь далее до Австралии и Антарктиды.
Еще точные данные о земном тяготении в данной точке и в данный момент нужны при запуске баллистических ракет. А их, как известно, запускают как с подводных лодок, так и с надводных кораблей, причем в любую погоду — коль на то есть необходимость. И здесь свою службу несут гравиметры, созданные нашими специалистами.
Используют данные гравиметрии и в мирных целях. Например, гравиметр, поставленный на самолет, позволяет точно оконтурить границы нефтегазового месторождения. Ведь пустоты в земле, где хранятся подземные клады, имеют меньшую плотность, чем окружающая порода, а значит, и гравиметр покажет меньшую величину. Так же могут быть обнаружены и рудные залежи.
Не забыты и чисто научные задачи. Гравиметры, как уже говорилось, не только помогли ученым выявить истинную форму Земли, но и позволяют понять, где именно пролегают границы литосферных плит. А это весьма важно, в частности, для прогнозирования сейсмичности того или иного района. Так что «шарик на пружинке» еще не сказал своего последнего слова в науке.
Станислав ЗИГУНЕНКО
ГОРИЗОНТЫ НАУКИ И ТЕХНИКИ
Проекты профессора Полякова
О том, что ракета не лучший транспорт для доставки людей и грузов в космос, говорят уже многие. Но чем ее заменить?
Оказывается, вариантов не так уж мало. Мы уже писали, например, о «вселенском поезде» А. Юницкого, о том, как идея космического лифта, некогда выдвинутая ленинградским инженером-изобретателем Ю. Арцутановым, постепенно начинает претворяться в жизнь.
Сегодня же расскажем о проектах профессора Астраханского государственного университета, академика Российской Академии космонавтики имени К.Э. Циолковского Георгия ПОЛЯКОВА.
Вы когда-нибудь обращали внимание, что в составе грузов, доставляемых на МКС очередным «Прогрессом», обязательно числится вода? А как же иначе! Без воды, как без воздуха и пищи, человек обойтись не может. Более того, вода необходима для многих производственных процессов, которые со временем будут вестись на орбите как около пашей планеты, так и возле Луны, Венеры, Марса…
Воды понадобится много, и пересылать ее на орбиту контейнерами окажется слишком накладно. Есть, правда, еще одна идея: поймать ледяной астероид или комету, подогнать их на околоземную орбиту и получать воду изо льда. Однако это тоже не очень просто и дешево.
Профессор Г.Г. Поляков предлагает создать систему промышленных водоводов, которые будут поставлять жидкость на орбиту с поверхности Земли. Причем, полагает ученый, такая доставка может стать по существу бесплатной.
Самое сложное и дорогое — построить сам трубопровод. Но здесь, как полагает Поляков, специалистам вполне может пригодиться опыт создания космического лифта. Протянув его ленту от Земли до орбиты, специалисты смогут затем параллельно протянуть и трубу из наноуглеродного материала, созданного недавно в Японии. Материал этот очень легок и прочен, так что, по расчетам ученого, при внутреннем диаметре трубы 35,68 мм и внешнем — не менее 46,88 мм, мы получим трубу достаточной прочности, масса которой составит «всего» 150–200 т.
Конечно, это немало. Но в том-то и вся «изюминка» проекта, что на трубу будут действовать не силы тяжести, сдавливающие ее, а центробежные силы растяжения, и это позволит сделать конструкцию намного легче.
В общих чертах устройство космического водовода профессор Поляков видит таким. Основание этой «водонапорной башни» устанавливается на якоре, расположенном на дне водоема — скажем, большого озера или водохранилища.
В простейшем случае, труба из точки А тянется до точки В, где располагается накопительный резервуар. Причем, как полагает профессор, имеет смысл располагать этот резервуар уже за пределами атмосферы, на высоте более 100 км. Воду туда закачивают по обогреваемому трубопроводу. А затем дают ей возможность замерзнуть в специальных эластичных контейнерах, которые нетрудно будет затем транспортировать в любую точку околоземных орбит с помощью космических буксиров.
Ну, а выше точки В, к точке П, где располагается противовес, тянется прочный трос, удерживающий всю конструкцию в растянутом состоянии. Силой же растяжения будет, повторим, центробежная сила — ведь не будем забывать, что планета наша вращается с немалой скоростью.
На рисунке показаны также различные модификации водовода, которые могут оказаться оптимальным не только для Земли, но и для Марса, спутников планет-гигантов, где тоже могут быть источники воды.
Схема функционировании водопровода «планета-орбита».
Цифрами обозначены: 1 — труба; 2 — баки с морозильными установками; 3 — центробежные электронасосы; 4 — турбоэлектрогенераторы.
Примерно таким же способом, как воду, на орбиту можно поднимать и контейнеры с грузами. Именно для этого профессор Г.Г. Поляков разработал проект самоуравновешенного вертикального космического контейнера — ЛСВК, который будет транспортировать грузы с экватора планеты на гиперболические траектории, ведущие на околосолнечные орбиты.
Такая система будет состоять из двух колес-шкивов А и В (см. схему) с желобами на ободах, связывающего их силового троса с проложенным вдоль него кабелем, двух электрических машин, находящихся на осях колес и вращающих замкнутую ленту транспортера, кольцом обегающего шкивы, а также управляющего блока.
Этот блок помещается в точке С троса, движущегося по круговой орбите, показанной на рисунке пунктиром. Причем, согласно законам небесной механики, он будет двигаться со скоростью экваториального спутника, не производя, вследствие невесомости, никакого воздействия на трос.
Контейнеры с грузами нужно будет располагать на специальных подставках по трассе вдоль экватора. Транспортер будет двигаться по трассе, подхватывать упаковки с грузами и, поднимая их до высшей точки, выбрасывать затем в космическое пространство. Здесь контейнеры соберут опять-таки космические буксиры, которые доставят их по назначению.