В России нет денег на эксперименты с американским размахом. Тем не менее, например, в Московском государственном строительном университете (бывшем МИСИ), на кафедре технологии отделочных и изоляционных материалов, вот уже более 15 лет идут подобные исследования. И кое-каких успехов наши специалисты добились.
По словам одного из сотрудников института, Михаила Шестеркина, здесь разработаны новые составы бетонных смесей, в которых стеклянные осколки, размолотые в порошок, идут в ход вместо наполнителя. Более того, стекло можно использовать и вместо традиционных вяжущих веществ — таких, как цемент, известь, гипс…
Причем для этого стекло расплавлять не нужно. Наши специалисты разработали энергосберегающую технологию, которая проста, дешева и не требует специального оборудования.
Отходы стекла размалывают и просеивают. Стекляшки диаметром до 5 мм используют в качестве наполнителя, а тонкомолотый порошок — как связующее. Но поскольку стекло, в отличие от цемента, от воды не разбухает, превращаясь в своеобразный клей, то технологи придумали такую хитрость. Чтобы началась реакция гидратации, наряду с водой используют активизатор в виде соединения щелочного металла. В щелочной среде стеклобой образует кремниевые кислоты, которые затем начинают превращаться в гель и наконец застывают. В итоге получается плотный, прочный и долговечный силикатный конгломерат — стеклобетон.
Проверка показала, что стеклобетон практически не поддается микробному разложению, хорошо противостоит кислотным дождям, красив и отлично держит тепло. Его с успехом можно использовать как в промышленном, так и в гражданском строительстве.
А недавно ученым из Российского химико-технологического университета имени Д.И. Менделеева придумали, как из отходов стекла делать одним махом сразу двухслойные плиты. Внешний слой — декоративный, внутренний — из вспененного стекла, похожий на застывшую губку, — служит отличным теплоизолятором и шумопоглотителем. В качества сырья для этих изделий вполне годятся и битые бутылки, и осколки оконных стекол, и кинескопы от вышедших из употребления телевизоров…
Весь этот стекольный бой дополнительно измельчают, получая своеобразный стеклянный песок, а потом засыпают его в форму. В верхней части формы песок оставляют чистым, а вот в нижнюю часть добавляют опять-таки тонко измельченный порошок пенообразователя. В качестве его может быть использован мел, угольная пыль, сажа или иное вещество, которое при нагревании образует крошечные пузырьки газа, вспенивающие расплавленную стеклянную массу. Получившийся двухслойный пирог помещают прямо в форме в специальную печь, где стекломасса сначала расплавляется, а потом застывает, согласно специальному температурному графику. В итоге из печи выходят стеклоблоки, лицевая поверхность которых (толщиной около 7 мм) образует декоративное глянцевое покрытие. А тыльная сторона толщиной в 3–4 см обеспечивает хорошую тепло- и звукоизоляцию. В зависимости от состава исходной смеси цвет стеклянных плиток получается разным — от глубоко черных до зеленовато-салатовых. И выглядят они ничуть не хуже мрамора.
Евгений МИХАЙЛОВ
Художник Ю. САРАФАНОВ
УДИВИТЕЛЬНАЯ НАУКА
«Гости» в «бочке»
Слышали слово «кукурбитурил»? Если нет, не удивительно. И само слово, и область науки, где оно в ходу — супрамолекулярная химия, — появились сравнительно недавно и успели попасть далеко не во все учебники.
Так выглядит «бочка» кукурбитурила.
Термином «супрамолекулярная химия» в 1979 году лауреат Нобелевской премии, французский исследователь Жан-Мари Лен обозначил область химии, где царствуют огромные и весьма странные молекулы очень сложного строения. Чтобы как-то выделить их среди других образований, гигантов стали называть супрамолекулярными ансамблями. А среди них есть и такой — C36H36N24О12. Вот ему-то химик В.Фриман и придумал имечко «кукурбитурил».
Говорят, молекула по внешнему виду показалась ему похожей на тыкву из рода Cucurbita. Как видно, химик был заодно и заядлым огородником-любителем. Так или иначе, название прижилось. Тем более что молекула действительно несколько похожа на тыкву или даже, скорее, на бочку (см. рис).
Впервые это соединение было получено еще в 1905 году немецким химиком Р.Берендетом. Но в то время не было электронных микроскопов, так что ученому не довелось увидеть, какое чудо он сотворил. Удивиться же было чему. Эта молекула — действительно настоящий гигант. Ее высота — 6 ангстрем, а диаметр — 5,5 ангстрема. Этого вполне достаточно, чтобы внутрь такой «бочки» можно было при желании поместить несколько молекул обычных размеров.
Впрочем, долгое время никто толком не знал, что делать с такой молекулой на практике. Интереса ради пробовали помещать внутрь ее разные другие, любовались получающимися структурами, да и только. Так продолжалось до тех пор, пока несколько лет назад российские химики из МГУ под руководством доктора химических наук А. Шевелькова не догадались соорудить подобную «бочку» из полупроводника на основе кремния. И не одну, а сразу множество. Получилась этакая решетка с ячейками, внутри каждой из которых расположены атомы йода.
Решетку теперь называют «хозяином», вещество внутри — «гостем».
Вся хитрость в том, что «гость» химически не связан с «хозяином». Тем не менее, как косточка в вишне, «сидит» довольно крепко. Что и обеспечивает уникальный набор свойств соединения.
«Гость» и «хозяин» представляют собой электрически заряженные группы. Исследователи из МГУ показали, что электропроводность таких супрамолекулярных веществ — величина типичная для полупроводников, а вот теплопроводность очень мала, такая же, как у аморфных материалов. Все вместе это позволило создать уникальные микрохолодильники, позволяющие регулировать температуру охлаждения в весьма широком диапазоне, вплоть до минус 240 °C! Причем для «электронного холодильника» не нужны ни фреон, ни какие-либо движущиеся детали. И работает он бесшумно.
Сначала такие холодильники думали использовать лишь в микроэлектронике для охлаждения интенсивно работающих чипов. Но потом выяснилось, что глубокое охлаждение с успехом может быть использовано и в приемниках инфракрасного диапазона длин волн. Дело в том, что полупроводникам мешают работать их собственные шумы, которые тем сильнее, чем выше температура самого полупроводника. Их так и называют — тепловые.
Охладив полупроводник, можно увеличить его чувствительность как минимум в 10 раз по сравнению с теми, что работают при комнатной температуре. Это значит, что прибор ночного видения сможет обнаружить цель втрое дальше.
Так же можно улучшить чувствительность приемников или мобильных телефонов. Если в мобильник поместить кукурбитуриловые решетки, то он сможет принимать даже сигналы со спутников на собственную антенну без предварительного усиления.
И это только начало…
Владимир ЧЕРНОВ
Соединив вместе множество «бочек», можно получить замысловатую структуру…
… А внутри каждой «бочки» можно поместить некоего «гостя».
ДВА ЭФФЕКТА И НЕМНОГО ФИЗИКИ…
Полупроводниковый холодильник работает на двух эффектах, изучаемых в курсе школьной физики. В 1834 г. французский ученый Ж. Пельтье открыл эффект поглощения и выделения тепла на контакте двух разнородных материалов в зависимости от направления электрического тока, идущего через контакт. Этот эффект особенно значителен, когда одно из двух контактирующих веществ — полупроводник, а другое — металл.