И все же «большая техника» про газовые аккумуляторы не забыла. Мощные, легкие и надежные, они стоят на некоторых спутниках. Процесс в них идет под давлением около 100 атм, а в качестве поглотителя газов применяется губчатый никель, который при таких условиях работает как катализатор. Все устройство размещено в сверхлегком баллоне из углепластика. Получились аккумуляторы с энергоемкостью почти в 4 раза выше, чем у аккумуляторов свинцовых. Электромобиль мог бы на них пройти около 600 км. Но, к сожалению, пока они дороги.
А. ИЛЬИН
Рисунки Ю. АНТОНОВА
ЗАОЧНАЯ ШКОЛА РАДИОЭЛЕКТРОНИКИ
Трансформатор цвета
Светодиоды, вы, наверное, знаете, потребляют в десятки раз меньший ток, чем лампы, да еще способны загораться и гаснуть в тысячные доли секунды. Так что использовать их для гирлянд гораздо интереснее.
Но вот цветовая гамма светодиодов пока скромна: красный, оранжевый, желтый и зеленый, да еще белый. Можно, конечно, окрасить бесцветные прозрачные корпуса чисто белых светодиодов цветными лаками. Но тогда гирлянда со светодиодами принципиально ничем не будет отличаться от привычной и гораздо более дешевой — на лампочках.
Однако способность новых источников света быстро загораться и гаснуть позволяет получить интересный эффект. Представьте себе, что гирлянда состоит из матовых белых шариков, которые не только светятся, но и плавно меняют свой цвет и яркость.
Это можно сделать, соединяя разноцветные светодиоды в компактные группы и подавая на них импульсы тока различной длительности и скважности. Так получаются «лампы переменного цвета». В основе их инерция зрения, явление, на котором построена кинопроекция. Длительность неподвижного показа каждого кинокадра 1/25 секунды, а инерция нашего зрения удерживает зрительное впечатление о нем 1/10 секунды. Появляющийся в этом промежутке следующий кадр, отличающийся формой или цветом объекта, отпечатает в глазу свой зрительный образ, который совместно с предыдущим создает некоторый новый вариант исходного.
При большой частоте смены кадров возникает зрительная иллюзия плавного перетекания очертаний и расцветок изображения. Если свечение пары близко посаженных светодиодов с красным и зеленым свечением (еще лучше — двухцветный однокристальный излучатель) модулировать поочередно с частотой 100…200 герц, наш глаз воспримет это как некоторое новое свечение. Цветом его можно управлять, изменяя скважность включенных состояний. Таким образом, располагая двумя исходными — красным и зеленым — цветами, можно получить четыре, с дополнительными оранжевым и желтым, занимающими в радужном спектре промежуточные положения.
На рисунке 1 схематически изображено одно из возможных воплощений электронного «трансформатора цветов».
На логических ячейках DD1.1 и DD1.2 типа 2И-НЕ построен самовозбуждающийся мультивибратор, симметрию которого можно изменять с помощью регулируемой цепочки обратной связи VD1, Rl, VD2, R2, управляемой переменным резистором R3. Изменяя положение его ползунка, можем варьировать в значительных пределах длительность полупериодов мультивибратора. Выход последнего через буферные ячейки DD1.3, DD1.4 управляет работой двухтактного ключевого каскада на транзистрорах VT1, VT2.
Рассмотренная схема предназначена в основном для показа принципа «трансформации» цвета излучения; чтобы построить практическую конструкцию, например, электронно-оптической броши либо карнавальной короны, понадобится управлять группами параллельно включенных светодиодов. При указанном на рисунке 1 типе транзисторов количество излучателей в каждой группе может быть порядка пяти.
Поскольку при этом емкости и габариты конденсаторов С2, С3 существенно возрастут, целесообразно видоизменить выходной каскад устройства, как показано на рисунке 2.
Заметим, что введенные в схему стабисторы VD3, VD4 обеспечивают запирание цепей светодиодов при соответствующих полупериодах мультивибратора (на рис. 2 условно не показанного). Для получения более мощного излучения было бы заманчиво использовать вместо светодиодов компактные люминесцентные лампы с резьбовым цоколем.
Сделать конструкцию интереснее можно, если автоматизировать изменения асимметрии мультивибратора, а также разнообразить цветовые пары, включая в них синий (окрашенный белый) и красный цвета, создающие фиолетовое свечение с оттенками.
Ю.ПРОКОПЦЕВ
ЧИТАТЕЛЬСКИЙ КЛУБ
Вопрос — ответ
Слышал, что человек, у которого выпадают зубы, в то же время теряет и память. Неужто это правда? Какая взаимосвязь между зубами и памятью?
Андрей Колошенко,
г. Ставрополь
Действительно, шведские ученые обнаружили удивительную взаимосвязь между стоматологическими заболеваниями и… функцией памяти. Как оказалось, чем меньше у человека зубов, тем хуже его способности к запоминанию. Профессор из университета города Умеа Ян Бедхал выяснил, что зубные нервы напрямую связаны с нервными центрами, отвечающими за работу мозга. Из-за удаления зубов функции нервных волокон нарушаются, и нейроны в зоне мозга, отвечающей за память, начинают стремительно разрушаться. Этот процесс способен серьезно повлиять на способность к запоминанию, особенно на так называемую «короткую память», например, когда человек пытается и не может вспомнить нужное слово. Причем если зуб расшатался и выпал сам по себе, к примеру, в результате болезни десен, — это еще полбеды. Наибольший урон памяти наносит его насильственное удаление. В результате экспериментов на приматах было доказано, что одновременное удаление сразу нескольких зубных нервов может привести к полной амнезии.
Результаты открытия поразили даже самих ученых: кто бы мог подумать, что, садясь в кресло стоматолога, чтобы избавиться от больного зуба, мы каждый раз лишаемся части памяти и медленно разрушаем свой мозг! По данным врачей, именно в удаленных коренных зубах кроется причина возрастного слабоумия и многих других болезней, связанных с работой мозга. Для их развития достаточно отсутствия пяти зубов, при этом неважно, будут они потом протезированы или нет. Так что доктора настоятельно рекомендуют заботиться о здоровье зубов.
ДАВНЫМ-ДАВНО
В 1800 году итальянский ученый Алессандро Вольта опустил в банку с кислотой две пластинки — из цинка и из меди — и соединил их проволокой. Стало видно, что в сосуде происходит нечто необычное: цинковая растворяется, а на медной выделяются пузырьки газа. Вольта предположил, что по проволоке протекает ток. Чтобы это доказать, он разорвал цепь и присоединил ее к лапкам лягушки. Они вздрогнули — значит, ток есть!
Так был изобретен «элемент Вольта» — первый гальванический элемент. Для удобства пользования Вольта придал ему форму столба, состоящего из спаянных между собою кружков цинка, меди и сукна, пропитанного серной кислотой. Вольтов столб высотою полметра развивал напряжение, от которого вздрагивала рука человека. Создаваемый им ток был в миллионы раз сильнее токов, получаемых ранее от электростатических машин. Поэтому за открытием Вольты последовали новые. В том же 1800 году Корляйль и Никольсон обнаружили разложение воды на Н2 и О2.