Представьте себе кучу ядер из разных материалов, сваленных вперемешку — каменных, чугунных, даже деревянных. Их, конечно, неплохо было бы рассортировать. И вот некий сумасшедший артиллерист-вояка предлагает сделать это следующим образом.

«Все ядра хоть и одинакового диаметра, но различного веса, — рассуждает он. — Самые легкие — деревянные, затем следуют каменные и, наконец, чугунные. Стало быть, если каждый раз при выстреле мы будем закладывать в пушку одно и то же количество пороха, то дальше всех полетят деревянные ядра, ближе упадут каменные и, наконец, совсем неподалеку — чугунные. Остается расставить на соответствующей дистанции ящики и ловить в них ядра»…

Идея, казалось бы, сумасбродная. Хотя бы потому, что наш артиллерист не учитывает разброса ядер при стрельбе, сопротивления воздуха и многих других факторов. Но… Примерно так ведь и работает современный масс-спектрограф. Берется ничтожная крупинка вещества и испаряется в камере, где создан почти космический вакуум (давление одной около стотысячной доли миллиметра ртутного столба). В таких случаях, например, многие органические вещества — наиболее сложные для анализа — превращаются в пар, состоящий из отдельных не связанных друг с другом молекул, даже без нагрева.

Потом этот пар облучают пучком электронов. Сталкиваясь с молекулами, электроны, словно ядра, вышибают из молекул своих собратьев, превращая молекулы в положительно заряженные ионы. В результате такой операции масса самой молекулы изменится лишь на величину массы электрона, а она ничтожна, зато она приобретет электрический заряд, с помощью которого ее легче отсортировать от других.

С этой целью ионы сначала разгоняют электрическими полями, а потом пропускают поперек силовых линий магнитного поля. При этом возникает сила Лоренца, пропорциональная заряду, скорости и напряженности поля, а также массе иона. Чем ион легче, тем сильнее он отклонится под действием магнитного поля. Молекулы-ядра разной массы попадут в различные «ящики»-секции специальной мишени, выбивая из нее опять-таки электроны. Возникает вторичный ток, который затем усиливают и фиксируют либо на фотопленке или на ленте самописца, либо на дисплее компьютера.

В итоге получаются графики с кривыми распределения Гаусса, по которым и судят, какие молекулы самые легкие, а какие — самые тяжелые. При этом аналитики могут по показаниям масс-спектрографа определить массу даже одной-единственной молекулы.

Но для чего все же это нужно? Наверное, не для того, чтобы удовлетворить наше любопытство: верно, масс-спектрограф используется для решения многих как сугубо научных, так и прикладных задач.

Например, несколько лет тому назад палеонтологи нашли окаменевшую раковину моллюска, жившего около 120 млн. лет тому назад, и решили узнать, в каких условиях он жил. Для этого с раковины слой за слоем, буквально по микрону, стали соскабливать известняк, из которого состоит раковина. Затем, нагревая, разложили его на составляющие, в том числе и на двуокись углерода. А уж по количеству содержания в двуокиси изотопа кислорода 18О стало можно судить о том, насколько было тепло в тот или иной период. Ведь известно: чем холоднее вода, в которой жил моллюск, тем больше изотопа в его панцире. Таким образом, удалось узнать, что родился моллюск весной, прожил четыре года. Причем весна была на редкость холодной…

Аналогичным образом анализируя воздух, заключенный в микроскопических капсулах, которые содержатся в кернах-образцах льда, добываемого с глубин в десятки, а то и сотни метров в Антарктиде, ученые надеются узнать об особенностях климата, царившего на нашей планете сотни миллионов лет назад. Уже сегодня ученые, например, узнали, что нынешнее глобальное потепление — не единственное в своем роде. Примерно такое же было около 40 000 лет тому назад.

А как вам нравится, например, такое практическое применение масс-спектрографа? Ныне отыскивают преступников по их следам, выявляют наркотики, взрывчатку, спрятанные в багаже пассажиров, специально обученные собаки-ищейки. Однако они быстро устают, не могут работать при сильной жаре, вблизи автозаправок, где сильно воняет бензином и т. д. Поэтому в скором будущем их заменят портативные «электронные носы», которые по чувствительности на определенные вещества могут в 1000 раз превосходить ищеек, вылавливать из воздуха буквально отдельные молекулы примеси…

С.СЛАВИН

ДОСЬЕ ЭРУДИТА

Прольется вулкан золотым дождем?

Время от времени удивительные подарки способны преподносить недра нашей планеты. Так американцы из штата Орегон ждут не только очередного извержения одного из находящихся поблизости вулканов, но и… золотого дождя.

Юный техник, 2004 № 09 _15.jpg

Дело в том, что несколько месяцев назад космический спутник, пролетая над центральной частью штата, обнаружил в земной коре большую квадратную выпуклость: высота — 10 см, стороны — около 20 км. Находится она вблизи трех вулканических гор, которые так и называются — Три Сестры. Геологи предположили, что рядом с ними следует ожидать рождения и четвертой — нового вулкана, который непременно заявит о своем появлении на свет извержением.

Событие, конечно, для местных жителей малоприятное, тем более что извержение, по оценкам геологов, обещает быть очень мощным. И тем не менее его ждут с нетерпением. Ведь в отличие от других вулканов, расположенных в тех краях, этот растет рядом с массивной жилой золотоносной руды. И при извержении есть вероятность, что вулкан зацепит эту жилу, расплавит золото и начнет разбрасывать самородки по окрестностям. А то и вообще прольет из жерла реку золотой лавы.

Участки земли по соседству с вулканом уже взлетели в цене, хотя некоторые специалисты предупреждают, что концентрация золота в горной породе может оказаться не столь велика, как того хотелось бы владельцам этих земельных участков. А вот само по себе извержение может оказаться смертельно опасным для всех, кто окажется поблизости.

СЕКРЕТЫ НАШИХ УДОБСТВ

Порядок как в аптеке

При слове «склад» у многих перед глазами возникает полутемное низкое помещение, заставленное стеллажами и захламленное разными вещами. Всем этим царством заведует угрюмый кладовщик Иван Иванович — единственный человек, которому доступна великая тайна — что и где лежит.

— Это понятие давно устарело, — уверяет меня Андрей Скирда, менеджер фирмы «Интек Системз». — Так может выглядеть склад лишь прошлого века…

И он стал рассказывать и показывать, как работает современное хранилище товаров. Во-первых, современное складское помещение часто напоминает ангар — огромное по своим размерам и с высоченным потолком. Только вместо самолетов здесь до самой крыши вздымаются «небоскребы» многоэтажных металлических стеллажей. Каждая ячейка каждого стеллажа пронумерована и зашифрована специальным штрих-кодом, наклейка которого четко виднеется в строго определенном месте.

По проходам между стеллажами разъезжают электрические кары-погрузчики, на подъемниках которых размещаются разного рода ящики, упаковки, контейнеры. И на каждом — своя штрих-кодовая наклейка.

Таким образом, уже при поступлении на склад каждая вещь получает свой порядковый номер, а также координаты места — ячейки, где она будет храниться. Одновременно информация о количестве полученного товара, его весе и местоположении заносится в память персонального компьютера.

— Вот и вся логистика, — сказал Андрей. — Этим термином, если кто не знает, именуют логическую научную систему распределения грузов, их транспортировки и хранения.

В итоге ее применения, в любую минуту, взглянув на экран компьютерного дисплея, можно узнать, какое количество какого товара и где хранится. И если это, например, склад магазина, компьютер может подсказать, что следует пополнить запасы, скажем, сыра или колбасы. В тот же складской компьютер могут поступать сведения и о температурном, влажностном режиме помещения.


Перейти на страницу:
Изменить размер шрифта: