— два вертолета с различными допускаемыми величинами взмаха лопастей до соударения с элементами конструкции, имея одинаковую живучесть по отдельным узлам, агрегатам и системам, в том числе и по лопастям несущих винтов, будут иметь разную боевую живучесть;
— катастрофические последствия для вертолета с меньшими допускаемыми углами взмаха лопастей могут наступить при значительно меньших повреждениях лопастей несущих винтов от различных средств поражения. (Некоторые виды не самых опасных повреждений, например, отрыв хвостовых отсеков несущих винтов, могут спровоцировать его самоуничтожение, так как маховое движение поврежденных лопастей в этом случае может достигать больших величин);
— для вертолетов одновинтовой и соосной схем необходимо рассматривать маховое движение поврежденных лопастей НВ в совершенно разных динамических системах. Для вертолетов одновинтовой схемы это динамическая система одного несущего винта с достаточно большими допустимыми углами взмаха лопастей до соударения с элементами конструкции фюзеляжа, а для соосной схемы — динамическая система двух несущих винтов с малыми допускаемыми углами взмаха лопастей каждого винта.
Схема вертолета, его аэродинамические характеристики и конструктивные решения в системе управления должны полностью исключать соударение на всех режимах полета, как в пределах, так и за пределами ограничений, поскольку неумолимая статистика показывает, что в боевой обстановке летчику не всегда удается соблюдать букву инструкции.
Второй опытно-экспериментальный образец Ми-28
Высказывалось мнение, что вопрос безопасных зазоров на вертолетах всех схем может быть решен по аналогии с самолетами, на которых в настоящее время широко применяются системы предупреждения и предотвращения попадания в опасные режимы полета, например, для предотвращения сваливания в штопор. Такие системы стоят на отечественных самолетах МиГ-29, Су-27, Ан-70 и зарубежных.
Но сторонники такого подхода не учитывают важнейшую разницу между работой этих систем на самолетах и вертолетах. Если на самолетах такие системы работают на границе рабочего диапазона (только в районе минимальных скоростей), где абсолютно все самолеты имеют одинаковую способность сваливания в штопор, то на вертолете эти системы должны работать как на границе, так и внутри диапазона боевого применения.
Даже если установка такой системы поможет решить проблему опасных зазоров, она уменьшит маневренные возможности вертолета любой схемы в достаточно большой области диапазона боевого применения из-за введения ограничений по суммарной угловой скорости (Wc=Wx+Wz+Wy) и, следовательно, по угловым скоростям крена (Wx), тангажа (Wz) и рыскания (Wy). Естественно, преимущество в этом случае, при прочих равных условиях, получает вертолет, на котором установка таких систем не требуется.
Для того чтобы показать, что вертолеты одновинтовой схемы не имеют ограничений по выполнению пространственных маневров, был проведен цикл испытаний по подтверждению маневренных характеристик Ми-28, хотя они и не входили в программу государственных сравнительных испытаний. Как показали расчеты и подтвердившие их летные испытания, при реализации больших значений суммарных угловых скоростей, то есть при выполнении петель, переворотов, полупетель и особенно бочек, перебалансировка вертолета в продольном отношении довольно значительна, что напрямую связано с зазорами до хвостовой балки и элементов конструкции фонаря кабины летчика.
Одной из особенностей вертолета Ми-28, как это было отмечено выше, является его небольшая строительная высота, ограниченная габаритными требованиями ТТТ по авиатранспоргабельности. Эти ограничения уменьшили эффективную центровку вертолета, введя дополнительные сложности при решении вопросов как по устойчивости и управляемости, так и по безопасным зазорам между лопастями несущего винта и элементами конструкции фонаря кабины и хвостовой балкой.
Уменьшение зазоров между лопастями несущего винта и элементами конструкции фонаря кабины и хвостовой балкой на вертолетам одновинтовой схемы получается не только на режимах выхода из горки, когда лопасти несущего винта, имеющие повышенное маховое движение в условиях полета при перегрузке n < 1, и хвостовая балка сближаются. Сближение может произойти и при выполнении маневров с большими угловыми скоростями из-за продольной перебалансировки.
Конструктивные решения, реализованные в системе управления Ми-28, позволили полностью закрыть вопрос опасных зазоров до важных элементов конструкции на всех режимах полета не только в пределах, но и за пределами ограничений, обеспечить при малой строительной высоте вертолета его хорошую устойчивость и управляемость, сделать его симметричным в управлении.
По результатам замеров зазоров между концами лопастей несущего винта и хвостовой балкой при выходе из горки, проведенных во время государственных сравнительных испытаний вертолета Ми-28, максимально допустимое дополнительное маховое движение лопасти до соударения с хвостовой балкой при пилотировании в пределах РЛЭ составляет чуть более b = 11°, а при выходе за пределы — около b = 8,5° (без учета упругости лопастей). На всех других режимах, включая выполнение таких фигур, как петли, бочки, перевороты, полупетли, зазоры между концами лопастей несущего винта и хвостовой балкой, величина b существенно больше. Реализованная во время испытаний практически, максимальная угловая скорость крена обеспечила безопасные зазоры между лопастями и элементами фюзеляжа (хвостовой балкой и фонарем кабины).
Таким образом, специальные испытания по подтверждению маневренности вертолета при выполнении петель Нестерова, бочек, переворотов, полупетель и других фигур с реализацией почти предельных значений угловых скоростей показали, что Ми-28 не имеет ограничений при выполнении пространственных маневров ни по зазорам между лопастями и элементами конструкции фюзеляжа, ни по угловым скоростям выполняемых маневров.
В настоящее время в нашей стране только на одновинтовых вертолетах Ми-34 и Ми-28 так же, как и на американских вертолетах АН-64 «Апач» и АН-66 «Команч», выполняется полный комплекс фигур высшего пилотажа, включая петли, полупетли, бочки и перевороты.
Третий экземпляр Ми-28 — вертолет Ми-28А
Сравнивая преимущества и недостатки подвижного и неподвижного стрелково-пушечного вооружения (СПВ), специалисты ОКБ достаточно быстро пришли к мнению, что подвижное СПВ имеет три неоспоримых преимущества над неподвижным.
1. Применение подвижной пушечной системы не накладывает ограничений на действия членов экипажа. В этом случае возможно нанесение удара одновременно по нескольким целям, находящимся в разных направлениях: летчик применяет неподвижное оружие — неуправляемые ракеты (НАР) и/или неподвижное стрелково-пушечное вооружение (НСПВ) для поражения целей впереди по направлению полета, оператор — подвижное СПВ для поражения целей сбоку.
2. Необходимое время от момента обнаружения цели до ее поражения (работное время) у вертолета с подвижным СПВ значительно меньше, чем у вертолета с неподвижным или ограниченно подвижным СПВ. Это связано с тем, что моменты инерции подвижной стрелково-пушечной платформы на несколько порядков меньше, чем у самого маневренного вертолета. Следовательно, угловые скорости и угловые ускорения подвижного оружия существенно выше, чем максимальная угловая скорость и угловые ускорения, развиваемые вертолетом как летающей платформой.