И тем не менее, когда нет возможности любования подлинником, можно (и нужно!) знакомиться с доступными репродукциями, лучше хорошими (а бывают всякие).
Для понимания невероятных свойств черных дыр нам необходимо сказать кратко о некоторых следствиях общей теории относительности Эйнштейна.
Гравитационный радиус
Чем же отличается теория тяготения Эйнштейна от теории Ньютона? Начнем с простейшего случая. Предположим, что мы находимся на поверхности сферической невращающейся планеты и измеряем силу притяжения этой планетой какого-либо тела с помощью пружинных весов. Мы знаем, что согласно закону Ньютона эта сила пропорциональна произведению массы планеты на массу тела и обратно пропорциональна квадрату радиуса планеты. Радиус планеты можно определить, например, измеряя длину ее экватора и деля на 2
.А что говорит о силе притяжения теория Эйнштейна? Согласно ей сила будет чуточку больше, чем вычисленная по формуле Ньютона. Мы потом уточним, что значит это «чуточку больше».
Представим себе теперь, что мы можем постепенно уменьшать радиус планеты, сжимая ее и сохраняя при этом ее полную массу. Сила тяготения будет нарастать (ведь радиус уменьшается). По Ньютону, при сжатии вдвое сила возрастает вчетверо. По Эйнштейну, возрастание силы опять же будет происходить чуточку быстрее. Чем меньше радиус планеты, тем больше это отличие.
Если мы сожмем планету настолько, что поле тяготения станет сверхсильным, то различие между величиной силы, рассчитываемой по теории Ньютона, и истинным ее значением, даваемым теорией Эйнштейна, нарастает чрезвычайно. По Ньютону, сила тяготения стремится к бесконечности, когда мы сжимаем тело в точку (радиус близок к нулю). По Эйнштейну, вывод совсем другой: сила стремится к бесконечности, когда радиус тела становится равным так называемому гравитационному радиусу. Этот гравитационный радиус определяется массой небесного тела. Он тем меньше, чем меньше масса. Но даже для гигантских масс он очень мал. Так, для Земли он равен всего одному сантиметру! Даже для Солнца гравитационный радиус равен только 3 километрам. Размеры небесных тел обычно много больше их гравитационных радиусов. Например, средний радиус Земли составляет 6400 километров, радиус Солнца 700 тысяч километров. Если же истинные радиусы тел много больше их гравитационных, то отличие сил, рассчитанных по теории Эйнштейна и теории Ньютона, крайне мало. Так, на поверхности Земли это отличие составляет одну миллиардную часть от величины самой силы.
Только когда радиус тела при его сжатии приближается к гравитационному радиусу, в столь сильном поле тяготения различия нарастают заметно, и, как уже говорилось, при радиусе тела, равном гравитационному, истинное значение силы поля тяготения становится бесконечным.
Прежде чем обсуждать, к каким следствиям это ведет, познакомимся с некоторыми другими выводами теории Эйнштейна.
Суть ее заключается в том, что она неразрывно связала, геометрические свойства пространства и течение времени с силами гравитации. Эти связи сложны и многообразны. Отметим пока лишь только два важных обстоятельства.
Согласно теории, Эйнштейна время в сильном поле тяготения течет медленней, чем время, измеряемое вдали от тяготеющих масс (где гравитация слаба). О том, что время может течь по-разному, современный читатель, конечно, слышал. И все же к этому факту трудно привыкнуть. Как Может время течь по-разному? Ведь согласно нашим интуитивным представлениям время — это длительность, то общее, что присуще всем процессам. Оно подобно реке, текущей неизменно. Отдельные процессы могут течь и быстрее и медленнее, мы можем на них влиять, помещая в разные условия. Например, можно нагреванием ускорить течение химической реакции или замораживанием замедлить жизнедеятельность организма, но движение электронов в атомах при этом будет протекать в прежнем темпе. Все процессы, как нам представляется, погружены в реку абсолютного времени, на течение которой, казалось бы, ничто влиять не может. Можно, по нашим представлениям, убрать из этой реки вообще все процессы, и все равно время будет течь как пустая длительность.
Так считалось в науке и во времена Аристотеля, и во времена И. Ньютона, и позже — вплоть До А. Эйнштейна. Вот что пишет Аристотель в своей книге «Физика»: «Время, протекающее в двух подобных и одновременных движениях, одно и то же. Если бы оба промежутка времени не протекали одновременно, они все-таки были бы одинаковы... Следовательно, движения могут быть разные и независимые друг от друга. И в том и в другом случае время абсолютно одно и то же».
Еще выразительнее писал И. Ньютон, считая, что говорит об очевидном: «Абсолютное, истинное, математическое время, взятое само по себе, без отношения к какому-нибудь телу, протекает единообразно, соответственно своей собственной природе».
Догадки о том, что представления об абсолютном времени отнюдь не столь очевидны, иногда высказывались и в давние времена. Так, Лукреций Кар в I веке до нашей эры писал в поэме «О природе вещей»: «Время существует не само по себе... Нельзя понимать время само по себе, независимо от состояния покоя и движения тел».
Но только А. Эйнштейн доказал, что никакого абсолютного времени нет. Течение времени зависит от движения и, что сейчас для нас особенно важно, от поля тяготения. В сильном поле тяготения все процессы, абсолютно все, будучи самой разной природы, замедляются для стороннего наблюдателя. Это и значит, что время — то есть то общее, что присуще всем процессам, — замедляется.
Замедление это обычно невелико. Так, на поверхности Земли время протекает медленнее, чем в далеком космосе, всего на ту же одну миллиардную часть, как и в случае с вычислением силы тяготения.
Хочется особенно подчеркнуть, что такое ничтожное замедление времени в поле тяготения Земли непосредственно измерено. Измерено замедление времени и в поле тяготения звезд, хотя обычно там оно тоже крайне мало. В очень сильном поле тяготения замедление заметно больше и становится бесконечно большим, когда радиус тела сравнивается с гравитационным.
Второй важный вывод теории Эйнштейна состоит в том, что в сильном поле тяготения меняются геометрические свойства пространства. Эвклидова геометрия, столь нам привычная, оказывается уже несправедливой. Это означает, например, что сумма углов в треугольнике не равна двум прямым углам, а Длина окружности не равна расстоянию ее от центра, умноженному на 2
. Свойства обычных геометрических фигур становятся такими же, как будто они начерчены не на плоскости, а на искривленной поверхности. Поэтому и говорят, что пространство «искривляется» в гравитационном поле. Разумеется, это искривление заметно только в сильном поле тяготения, если размер тела приближается к его гравитационному радиусу.Конечно, представление об искривлении самого пространства так же трудносовместимо с нашими укоренившимися интуитивными представлениями, как и представление о разном течении времени.
Столь же определенно, как и о времени, И. Ньютон писал о пространстве: «Абсолютное пространство, по своей собственной природе независимое от всякого отношения к внешним предмета, остается неизменным и неподвижным». Пространство представлялось ему как некая бесконечная «сцена», на которой разыгрываются «события», никак не влияющие на эту «сцену».
Еще первооткрыватель неэвклидовой, «искривленной» геометрии — Н. Лобачевский высказывал мысль о том, что в некоторых физических ситуациях может проявляться его — Н. Лобачевского — геометрия, а не геометрия Эвклида. А. Эйнштейн своими расчетами показал, что пространство действительно «искривляется» в сильном поле тяготения.
Этот вывод теории также подтвержден прямыми экспериментами.
Почему же мы с таким трудом воспринимаем выводы общей теории относительности о пространстве и времени? Да потому, что повседневный опыт человечества, и даже опыт точной науки, на протяжении веков имел дело только с условиями, когда изменения свойств времени и пространства совершенно незаметны и посему полностью пренебрегались. Все наши знания основываются на повседневном опыте. Вот мы и привыкли к тысячелетней догме об абсолютно неизменяемых пространстве и времени. Наступила наша эпоха. Человечество в своих познаниях столкнулось с условиями, когда влиянием материи на свойства пространства и времени пренебрегать нельзя. Несмотря на инертность нашего мышления, мы должны привыкнуть к такой необычности. И теперь новое поколение людей уже гораздо легче воспринимает истины теории относительности (основы специальной теории относительности изучают сейчас в школе!), чем это было несколько десятилетий назад, когда теорию Эйнштейна с трудом воспринимали даже самые передовые умы.