Это была моя первая публикация по общей теории относительности.

Но вернемся к работе К. Шварцшильда. Он с помощью изящного математического анализа решил задачу для сферического тела и переслал ее А. Эйнштейну для передачи Берлинской академии. Решение поразило А. Эйнштейна, так как сам он к тому времени получил лишь приближенное решение, справедливое только в слабом поле тяготения. Решение же К. Шварцшильда было точным, то есть справедливым и для сколь угодно сильного поля тяготения вокруг сферической массы; в этом было его важное значение. Но ни А. Эйнштейн, ни сам К. Шварцшильд тогда еще не знали, что в этом решении содержится нечто гораздо большее. В нем, как выяснилось позже, содержится описание черной дыры.

А теперь продолжим разговор о второй космической скорости. Какую скорость согласно уравнениям Эйнштейна надо придать ракете, стартующей с поверхности планеты, чтобы она, поборов силы тяготения, улетела в космос?

Ответ оказался чрезвычайно прост. Здесь справедлива та же формула, что и в ньютоновской теории. Значит, вывод П. Лапласа о невозможности для света уйти от компактной тяготеющей массы подтвердился теорией тяготения Эйнштейна, согласно которой вторая космическая скорость должна быть равна скорости света как раз на гравитационном радиусе.

Сфера с радиусом, равным гравитационному, получила название сферы Шварцшильда.

Предсказание

Итак, согласно теории Эйнштейна, как только радиус небесного тела становится равным его гравитационному радиусу, свет не сможет уйти с поверхности этого тела к далекому наблюдателю, то есть оно станет невидимым. Но читатель наверняка уже обратил внимание, что это чрезвычайно необычное свойство далеко не единственное из тех «чудес», которые должны произойти с телом, размеры которого сравнялись с гравитационным радиусом. Согласно сказанному в предыдущем разделе сила тяготения на поверхности звезды с радиусом, равным гравитационному, должна стать бесконечно большой, так же как и бесконечно большим должно быть ускорение свободного падения. К чему это может привести?

Чтобы ответить на этот вопрос, вспомним сначала, почему обычные звезды и планеты не сжимаются к центру под действием тяготения, а представляют собой равновесные тела.

Сжатию к центру препятствуют силы внутреннего давления вещества. В звездах это давление газа с очень высокой температурой, стремящееся расширить звезду. В планетах типа Земли это силы натяжения, упругости, давления, также препятствующие сжатию. Равенство сил тяготения и указанных противоборствующих сил как раз и обеспечивает равновесие небесного тела.

Противоборствующие тяготению силы зависят от состояния вещества: от его давления и температуры. При его сжатии они увеличиваются. Однако если сжать вещество до какой-то конечной (не бесконечно большой) плотности, то они останутся также конечными. Иначе обстоит дело с силой тяготения. С приближением размера небесного тела к гравитационному радиусу тяготение стремится, как мы знаем, к бесконечности. Теперь оно не может быть уравновешено противоборствующей конечной силой давления, и тело должно неудержимо сжиматься к центру под его действием.

Итак, важнейший вывод теории Эйнштейна гласит: сферическое тело, радиус которого равен гравитационному радиусу и меньше, не может находиться в покое, должно сжиматься к центру. «Но позвольте, — спросит читатель, — если на гравитационном радиусе сила тяготения бесконечна, то какова она станет, как только тело уменьшится до размеров меньше гравитационного радиуса?»

Черные дыры и Вселенная doc2fb_image_03000004.png

Ответ довольно очевиден. До сих пор мы говорили о силе тяготения на поверхности статического, не сжимающегося в данное время тела. Но она зависит от состояния движения. Как мы уже говорили выше, при свободном падении наступает состояние невесомости — свободно падающее тело вообще не испытывает действия гравитационной силы. Поэтому на поверхности свободно сжимающегося тела не ощущается никакой силы тяготения (и вне сферы Шварцшильда, и внутри ее). Увлекаемое тяготением вещество не может остановиться на сфере Шварцшильда (оно испытало бы тогда бесконечную силу тяготения). Тем более не может оно остановиться внутри сферы Шварцшильда. Любая частица, например ракета, со сколь угодно сильным двигателем, оказавшись от тяготеющего центра на расстоянии меньше гравитационного радиуса, должна неудержимо падать к этому центру.

Итак, мы получили ответ на вопрос о том, к чему ведет бесконечное нарастание гравитационной силы с приближением тела к сфере Шварцшильда: к катастрофическому, неудержимому его сжатию. Физики называют это явление релятивистским коллапсом.

Таким образом, достаточно сжать тело до размеров гравитационного радиуса, а дальше оно само будет неудержимо сжиматься. Так возникает объект, который впоследствии получил название черной дыры.

Описанный нами процесс релятивистского гравитационного коллапса впервые был строго рассчитан с помощью уравнений общей теории относительности американскими физиками Р. Оппенгеймером и Г. Волковым в 1939 году. Их статья является образцом краткости и ясности изложения. Полностью и строго описывая суть явления, она занимает всего несколько страниц.

Имя Р. Оппенгеймера хорошо известно не только физикам, но и широкой общественности. Он участвовал в создании американской атомной бомбы, в 1943—1945 годах возглавлял знаменитую Лос-Аламосскую научную лабораторию. Но впоследствии понял, какую опасность человечеству несет создание водородной бомбы и гонка вооружений, выступил за использование атомной энергии только в мирных целях и в 1953 году был снят со всех постов как неблагонадежный американец.

Работу Р. Оппенгеймера и Г. Волкова следует считать строгим предсказанием возможности возникновения черных дыр. Само название «черная дыра» появилось гораздо позже — в конце 60-х годов. Придумал его американский физик Д. Уилер. До этого они известны были под разными именами. Например, у нас их называли «коллапсарами», однако выяснилось, что это слово звучит не очень благозвучно по-английски. Впрочем, с названием «черная дыра», несмотря на его точность и образность, тоже бывали казусы.

Закончим этот раздел следующим замечанием. Черную дыру можно в принципе сделать искусственно. Для этого надо сжать любую массу до размеров гравитационного радиуса, дальше она сама будет сжиматься, испытывая гравитационный коллапс.

Правда, на этом пути лежат огромные технические трудности. Чем меньшую массу мы хотим превратить в черную дыру, тем до меньших размеров ее необходимо сжать, поскольку гравитационный радиус прямо пропорционален массе. Так, мы знаем, что гравитационный радиус Земли равен примерно одному сантиметру. А чтобы превратить в черную дыру, скажем, гору размером в миллиард тонн, пришлось бы ее сжать до размера атомного ядра!

В последующих разделах мы увидим, что во Вселенной большие массы могут самопроизвольно превращаться в черные дыры в ходе естественной эволюции. Однако, прежде чем говорить об этом, продолжим знакомство с удивительными особенностями черных дыр.

Глава II.

Вокруг черной дыры

Черные дыры и Вселенная doc2fb_image_03000005.png

Дыра во времени 

Как уже говорилось, теория тяготения предсказывает, что время течет тем медленней, чем ближе часы находятся к гравитационному радиусу. Это означает, что, какие бы процессы ни протекали в сильном поле тяготения, далекий от черной дыры наблюдатель увидит их в замедленном темпе.

Так, для него колебания в атомах, излучающих свет в сильном поле тяготения, происходят замедленно, и фотоны от этих атомов приходят к нему «покрасневшими», с уменьшенной частотой. Это явление носит название гравитационного красного смещения (оно послужило основой для одной из проверок правильности теории Эйнштейна). Для нас сейчас важен тот факт, что замедление времени и покраснение света тем больше, чем ближе область излучения располагается к границе черной дыры (к сфере Шварцшильда). Там время замедляет свой бег, и на самой границе черной дыры оно как бы замирает для далекого наблюдателя. Этот наблюдатель, следя, например, за камнем, падающим к черной дыре, видит, как у самой сферы Шварцшильда он постепенно «тормозится» и приблизится к границе черной дыры лишь за бесконечно долгое время.


Перейти на страницу:
Изменить размер шрифта: