Начав с первого члена и прибавляя один за другим остальные, получаем следующую последовательность (записанную в виде десятичных дробей):
4 → 2,667 → 3,467→ 2,895 → 3,340 → …
Сумма подходит к числу π все ближе и ближе, а результат скачет все меньше и меньше. Тем не менее этот метод требует более 300 членов, чтобы ответ имел точность в два десятичных знака, так что он практически непригоден для тех, кто желает найти большее число цифр в десятичном разложении числа π.
В конце концов с помощью анализа удалось получить другие бесконечные ряды для π, менее симпатичные на вид, но более эффективные для действий с числами. В 1705 году астроном Абрахам Шарп применил такой ряд для вычисления π с точностью до 72 десятичных знаков, сокрушив продержавшийся столетие рекорд ван Цейлена, составлявший 35 знаков. Да, это было достойным достижением, но в нем было мало пользы. Решительно нет никаких практических причин для того, чтобы знать число π с точностью до 72 знаков, да, впрочем, и до 35 тоже. Инженерам, имеющим дело с прецизионными инструментами, вполне хватает четырех десятичных знаков, а чтобы вычислить длину окружности Земли с точностью до долей сантиметра, достаточно десяти знаков. Если взять 39 десятичных разрядов, то окажется возможным посчитать длину окружности, охватывающей всю известную нам Вселенную, с точностью порядка радиуса атома водорода. Дело, однако, было вовсе не в практической целесообразности — отнюдь не практические соображения двигали учеными эпохи Просвещения, одержимыми вычислением числа π. Цель охоты за цифрами заключалась в самой охоте, это было романтическое приключение. Через год после предпринятых Шарпом усилий Джон Мэчин добился точности в 100 знаков, а в 1717 году француз Тома де Ланьи прибавил к ним еще 27. К началу следующего столетия вперед вырвался Юрий Вега из Словении со своими 140 знаками.
В 1844 году, с головой погрузившись в работу на два месяца, немецкий молниеносный эстрадный вычислитель Захария Дазе отодвинул рекорд вычисления числа π до отметки 200 десятичных знаков. Дазе использовал ряд, который хотя на вид и сложнее, чем приведенная выше формула для π, но на самом деле гораздо удобнее в употреблении. Во-первых, потому что он сходится к π с неплохой скоростью. Точность в два десятичных знака достигается уже после первых девяти членов. Во-вторых, с дробями 1/2, 1/5 и 1/8, которые все время появляются в каждом третьем члене, удобно иметь дело. Если записать 1/5 как 1/10, a 1/8 — как 1/2 × 1/2 × 1/2, то все необходимые действия с этими членами можно свести к комбинациям удвоения и взятия половины. Дазе выписал справочную таблицу, к которой обращался в ходе вычислений, начиная с 2, 4, 8, 16, 32 и далее по мере надобности. Поскольку он выполнял вычисления числа π с точностью до 200 знаков, полученное в самом конце удвоение будет иметь 200 цифр в длину. Это происходит после 667 последовательных удвоений.
Дазе использовал такое разложение:
Отсюда π = 4(0,825 - 0,0449842 + 0,00632 - …).
Учет одного члена дает 3,3,
учет двух членов — 3,1200
и учет трех — 3,1452.
Дазе недолго почивал на лаврах, поскольку на его рекорд очень скоро нацелились британцы, и по прошествии десяти лет Уильям Резерфорд вычислил π с точностью в 440 знаков. Он побуждал своего протеже Уильяма Шэнкса — математика-любителя, который держал школу с пансионом в графстве Дарэм, — не останавливаться на достигнутом. В 1853 году Шэнкс достиг 607 знаков, а в 1874-м — 707. Его рекорд продержался семьдесят лет, пока Д. Ф. Фергюсон из Королевского морского колледжа в Честере не нашел ошибку в вычислениях Шэнкса. Шэнкс сделал ошибку в 527-м знаке, а потому и все последующие тоже были неправильными. Фергюсон провел последний год Второй мировой войны, вычисляя число π вручную, и к маю 1945 года достиг 530 знаков. К июлю 1946-го он дошел до 620, и более никто никогда не вычислял π с помощью лишь ручки и листа бумаги.
Фергюсон был последним, кто охотился за цифрами вручную, и первым, кто стал делать это, используя технику. Благодаря настольному калькулятору он прибавил почти 200 новых разрядов всего за год, так что в сентябре 1947 года π было известно с точностью до 808 десятичных знаков. А затем компьютеры изменили правила игры. Первым компьютером, сразившимся с π, был Электронный числовой интегратор и вычислитель ENIAC, построенный в последние годы Второй мировой войны по заказу армии США в Лаборатории баллистики в Мэриленде. Размером он был с небольшой дом. В сентябре 1949 года ENIAC за 70 часов работы вычислил π с точностью в 2037 знаков, побив предыдущий рекорд более чем на тысячу десятичных разрядов.
По мере появления новых знаков в числе π становилось все более ясно, что найденные числа не подчиняются никакому очевидному порядку. Однако только в 1767 году математики смогли доказать, что сумбурная последовательность цифр числа π никогда не повторяется. Это открытие вытекало из рассмотрения вопроса о том, числом какого типа может быть π.
Числа самого простого типа — натуральные. Это числа для счета, начинающиеся с единицы:
1, 2, 3, 4, 5, 6 …
Натуральные числа, однако, имеют некоторое ограничение, поскольку идут только в одном направлении. Более полезны целые числа, которые состоят из натуральных, нуля и отрицательных натуральных чисел:
… -4, -3, -2, -1, 0, 1, 2, 3, 4 …
Любое положительное или отрицательное целое число от минус бесконечности до плюс бесконечности входит в целые числа. Если бы нашлась гостиница с неограниченным числом этажей, а также с неограниченным числом все более глубоких подземных уровней, то кнопками в лифте там были бы все целые числа.
Числа другого основного типа — это дроби, которые представляют собой числа, записанные в виде a/b, где а и b — целые, причем b не равно 0. Поскольку дроби эквивалентны отношениям между целыми числами, они также называются рациональными числами[27], и их бесконечно много. На самом деле имеется бесконечно много рациональных чисел уже между 0 и 1. Давайте, например, возьмем дробь, числитель которой равен 1, а знаменатель — натуральное число, больше или равное 2. Это дает множество, составленное из
Можно пойти дальше и доказать, что имеется бесконечно много рациональных чисел между любыми двумя рациональными числами. Пусть с и d — любые два рациональных числа, причем с меньше d. Точка на полпути между с и d представляет собой рациональное число — оно равно (c + d)/2. Назовем эту точку e. Теперь можно найти точку на полпути между c и e. Это (c + e)/2 — рациональное число, которое также лежит между с и d. Будем продолжать так до бесконечности, каждый раз разбивая расстояние между с и d на все меньшие и меньшие части. Не важно, сколь малым было расстояние между с и d в самый первый раз — между ними всегда найдется бесконечно много рациональных чисел.
Поскольку между любыми двумя рациональными числами всегда можно найти бесконечно много рациональных чисел, можно было бы подумать, что каждое число — рациональное. Без сомнения, именно на это одно время и надеялся Пифагор. Его метафизика основывалась на вере в то, что мир состоит из чисел и гармонических пропорций между ними. Существование числа, которое нельзя описать как отношение, по крайней мере сильно ослабляло его позиции, если не прямо им противоречило. Но, к несчастью для Пифагора, имеются числа, которые нельзя выразить в виде дроби, и к его немалому конфузу, одно из них дает его собственная теорема. Если взять квадрат со стороной, равной единице, то длина его диагонали равна квадратному корню из двух, а это число нельзя записать в виде дроби. (Доказательство — в приложении 2 на веб-сайте, посвященном этой книге.)
27
«Рациональный» от слова ratio — отношение. (Примеч. перев.)