Уже говорилось, что во всех первых трех пилотируемых программах США создавалась чисто кислородная атмосфера в кабинах КК. Однако только в начале экспериментальной работы над КК «Аполлон» американские специалисты по-настоящему ощутили всю опасность такого подхода. Как известно, при подготовке первого пилотируемого КК «Аполлон» произошел пожар в командном модуле, в результате которого погибли космонавты В. Гриссом, Э. Уайт и Р. Чаффи. Причиной пожара стало возгорание элементов кабины в среде чистого кислорода в результате замыкания в электрической цепи.

Специальная комиссия в течение 2,5 мес проводила тщательное и всестороннее расследование причин аварии и выработку ряда рекомендаций по изменению конструкции, материалов, процедуры и условий испытаний. В результате было внесено большое число изменений в конструкцию, заменены многие материалы и детали кабины. В частности, был полностью переработан механизм входного люка командного модуля, после чего он мог открываться изнутри за 2 с (вместо 60–90 с, как было раньше). Оценивалось, что доработки удлинили сроки выполнения программы на 1,5 года.

После наземного пожара самой тяжелой была авария с КК «Аполлон-13», на котором произошел взрыв кислородного бака в служебном модуле. Характерна и поучительна причина этого взрыва — сочетание скрытого конструктивного дефекта и эксплуатационной ошибки. При наземных испытаниях через электрический нагреватель случайно прошел повышенный ток, расплавивший изоляцию; в полете нагреватель включился и возникло короткое замыкание. Аварии могло и не быть, если этот элемент не имел бы прямого контакта с кислородом. Чтобы вернуться на Землю, облетев Луну (только в этом случае космонавты могли вернуться на Землю), космонавты Дж. Ловелл, Дж. Суиджерт и Ф. Хейс воспользовались лунным модулем с его кислородом, электроэнергией, двигателями и другим оборудованием.

Эффективное управление обеспечивало вход КК «Аполлон» в земную атмосферу со второй космической скоростью и торможение в атмосфере. Приводнение командного модуля выполнялось на системе парашютов — три основных парашюта снижали скорость приводнения до 8 м/с. При отказе одного из парашютов эта скорость могла быть до 10,5 м/с, однако и при этом обеспечивалась безопасная посадка. Именно такой случай произошел при спуске на Землю КК «Аполлон-15».

Для того чтобы уменьшить нагрев боковой конической поверхности командного модуля в атмосфере при возвращении на Землю, конусность модуля увеличивали (до угла раскрыва 66°), когда величина суммарного теплового потока достигала 100 тыс. ккал/м2. Но как нередко бывает, решение одной проблемы создало другую. При такой форме командный модуль имел в воде два устойчивых положения, и нередко после приводнения космонавты оказывались вниз головой в кабине, раскачивающейся на волнах. На возвращение в нормальное положение, а для этого надувались специальные баллоны, уходило несколько минут. Эти минуты были нелегкими дополнительными испытаниями для космонавтов, возвращавшихся на Землю после продолжительного пребывания в невесомости.

Ряд систем, которыми снабжался ракетно-космический комплекс на случай возникновения аварийных ситуаций, так и не был испытан в полете. К ним, например, относилась САС, которая была подобна созданной для КК «Меркурий». При возникновении аварии при спуске на Луну предусматривалось спасение космонавтов и возвращение их в основной блок КК «Аполлон». При отказах посадочной ступени или других систем лунного модуля предполагалось аварийное разделение ступеней и возвращение на орбиту с помощью двигательной установки взлетной ступени. В распоряжении космонавтов находилась резервная система управления, способная выполнить все необходимые операции.

Надо сказать, что характерной особенностью подготовки и проведения космических полетов является детальное планирование не только всех этапов основной программы, но и дополнительных резервных вариантов — так называемых нештатных ситуаций. И хотя на самом деле расчетные (т. е. заранее разработанные) нештатные ситуации, как правило, не происходят — не реализуются в полете (жизнь, как всегда, оказывается гораздо богаче любых моделей), тем не менее такой подход к проектированию ракетно-космической техники и соответствующая подготовка программы оказывают неоценимую услугу для обеспечения надежности и безопасности полетов.

11 КК «Аполлон» использовались при отработке и полетах к Луне (6 из 9 полетов к Луне включали в себя посадку лунного модуля на ее поверхность). Кроме того, основной блок КК «Аполлон» применялся для доставки трех экспедиций американских космонавтов на орбитальную станцию «Скайлэб» и при осуществлении программы ЭПАС (с помощью РН «Сатурн-1Би»). Всего в полетах на КК «Аполлон» приняли участие 39 различных американских космонавтов[2].

Программа ЭПАС

Около полутора десятилетий космическая техника в СССР и США развивалась относительно независимо. Одним из мотивов объединения усилий явилось стремление иметь возможность оказывать взаимную помощь в космосе. Для этого необходима была прежде всего техническая основа и нужны были совместимые КК, способные взаимодействовать и состыковываться. Но в первую очередь в подобных делах требовалась добрая воля, которая наметилась было во взаимоотношениях стран в начале 70-х годов. Таковы были предпосылки осуществления программы экспериментального полета «Аполлон» — «Союз» (ЭПАС).

В результате первых встреч специалисты обеих стран впервые воочию убедились в разнице систем КК «Союз» и «Аполлон». К этим системам, нуждающимся в совместимости при осуществлении программы ЭПАС, прежде всего относились системы сближения, стыковки, жизнеобеспечения и связи. Вначале были созданы 4 смешанные рабочие группы по этим системам, позже к ним присоединилась пятая, ответственная за общую увязку технических вопросов, организацию и планирование (эта группа получила порядковый № 1). Эти специалисты во главе с техническими директорами проекта (с советской стороны членом-корреспондентом АН СССР К. Д. Бушуевым, с американской — доктором Г. Ланни) преодолели все противоречия и подготовили экспериментальный полет КК «Союз» и «Аполлон».

КК «Союз-19» и «Аполлон», изготовленные и испытанные по программе ЭПАС независимо, стартовали 15 июля 1975 г. соответственно с космодрома Байконур и космодрома им. Кеннеди. Между КК была установлена двухсторонняя связь, они сблизились и произвели одну за другой две стыковки (17 и 19 июля). Общая масса состыкованных КК составила 20,97 т. Воспользовавшись переходным модулем, советские и американские космонавты совершили несколько взаимных визитов. После успешного выполнения программы КК «Союз-19» благополучно приземлился (а КК «Аполлон» приводнился) в расчетном районе.

Для обеспечения совместимости технических систем использовались различные методы. Совместимость, например, стыковочных агрегатов, непосредственно механически взаимодействующих и соединяемых частей КК, была обусловлена тем, что создали принципиально новое стыковочное устройство. Вместо стыковочного механизма с конусом и штырем, который служил рабочим элементом амортизатора и производил предварительные выравнивание и стягивание КК «Союз», в новой конструкции по периферии стыковочных шпангоутов размещались кольца с тремя лепестками.

При взгляде с торца оба агрегата выглядят одинаковыми, но тем не менее соединяются между собой; специалисты в этом случае их называют андрогинными (двуполыми в переводе с древнегреческого). Кроме того, каждый агрегат мог выполнять как активную роль (производить все операции при помощи расположенных на нем механизмов), так и пассивную роль. Андрогинные периферийные агрегаты стыковки (АПАС) незаменимы там, где требуется обеспечить возможность стыковки многих космических аппаратов между собой.

Специалисты каждой страны спроектировали и изготовили свой АПАС, который существенно отличался по принципиальной схеме и по конструкции отдельных элементов. Совместимость АПАС достигалась согласованием минимального числа размеров и характеристик. Такой подход существенно упростил всю работу. Совместимость была проверена при совместных испытаниях и контрольной проверке летных агрегатов.

вернуться

2

См. приложение «От Гагарина до наших дней», помещенное в брошюре «Ю. А. Гагарин (к 50-летию со дня рождения)». М., Знание, 1984.


Перейти на страницу:
Изменить размер шрифта: