Рассказывать подробно обо всем, что делалось за этот период, не имеет смысла. Анализировались все возможные и невозможные причины — версии неполной стыковки. Вскоре космонавты увидели через торцевой иллюминатор тросик, который остался от датчика, контролировавшего отделение ракеты–носителя. Тросик скрывался из поля зрения где?то в районе стыка. В ЦУП доставили чертежи и образцы живых датчиков. Версия тросика некоторое время была у всех на устах. «Что видишь, то и происходит», — сказал тогда опытный Э. Корженевский, вывод подтверждается всей предыдущей практикой, опытом отказов и разбирательств. Одним из методов повышения надежности является анализ нештатных ситуаций. Специалисты заранее искали ситуации, которые вели к отказам, и предусматривали методы выхода из этих ситуаций. Практика космонавтики многократно демонстрировала эффективность этого подхода.

За много лет до этого один из руководителей американской космической программы К. Крафт во время работы над проектом «Союз» — «Аполлон» сказал примерно так: «Никогда не случается то, на что рассчитываешь заранее, но чем больше предусмотрено вероятных и невероятных ситуаций, тем более надежна и живуча становится система». Мы тоже поступали по этому правилу.

Во время полета мы искали случившуюся, а не просто гипотетическую нештатную ситуацию.

На стыке явлений и объектов всегда что?то происходит. На стыке «Кванта» и «Мира» тоже что?то случилось, но, к сожалению, мы не могли заглянуть в этот стык. В который раз приходилось полагаться только на телеметрию. В моем стыковочном архиве хранятся телеметрические ленты, на которых записаны параметры стыковки в самых экстремальных для нас, стыковщиков, событий — апреля 1971 года, июля 1975 года, октября 1977 года. Эти почти вещественные данные позволили воспроизвести картину того, что происходило в космосе, иногда очень быстро, в считанные доли секунды. Система обработки этих данных действительно глобальная. В ней участвуют сотни специалистов, разбросанных, в буквальном смысле, по всему миру. Только в трудные минуты по достоинству оценивается их труд. Они необходимы, когда что?то случилось, когда нужна помощь.

Наши телеизмерения начинались в самой системе стыковке. Измеряемых параметров не может быть очень много, а большинство из них несут минимум информации: сигнальные параметры, показывающие, например, есть касание или его нет. Есть более информативные параметры, к ним относится и наш ЛПШ, есть датчики деформаций боковых амортизаторов БПР и БПТ, тоже измеряемые с помощью потенциометра.

Проектирование телеизмерений космических систем является своего рода искусством. Зато искусно спроектированная система позволяет творить настоящие чудеса, их можно причислить к трюкам, фокусам. Действительно, даже понимая существо, я не переставал удивляться, как удавалось определять точку касания головки штанги о приемный конус, а ведь на самом конусе никаких датчиков нет. Правда, потом оставались следы, по которым космонавты иногда проверяли результаты, вычисленные нами на Земле.

Возвращаясь к рассказу о трудной стыковке «Кванта», надо сказать, что и на этот раз телеметрия сослужила нам неоценимую службу, так как именно на ней базировался основной анализ.

По телеметрии мы заметили аномалию при ударах штанги о приемный конус. В отличие от нормальной стыковки почему?то сработал датчик сцепки. Логично предположили, что промах был близок к предельно допустимому значению, при этом головка могла коснуться цилиндрического края в приемном конусе. Большой промах подтверждали и другие параметры. Однако показания остальных датчиков объяснялись трудно, ясности не было.

Требовалось что?то экстренно предпринять. Уж больно дорог был нам этот «Квант». Модуль был уникален и по его роли в составе ОС «Мир», и по составу научной аппаратуры, и по затраченным усилиям. Как сказал один из руководителей научной программы, в состав которой вошел телескоп, созданный с участием западноевропейских стран, ее аспекты обсуждались в широких кругах мировой общественности, и не только научной, а даже в Ватикане.

Для нас, стыковщиков, этот модуль, с установленными на нем двумя модернизированными узлами, также достался нелегко. Мы впервые состыковали две 20–тонные и 30–тонные конструкции, для этого нам пришлось модернизировать всю амортизационную систему так, чтобы поглощать кинетическую энергию столкновения и гасить относительные колебания после сцепки. Опять же, впервые эту систему сделали адаптивной, самонастраивающейся, применив новые управляемые демпферы. Динамику стыковки промоделировали на вычислительной машине и воспроизвели на вновь созданном 6–степенном стенде «Конус». Провели дополнительные испытания в вакууме при высокой и низкой температурах.

Большие массы в космосе — это не только большая энергия при стыковке, при совместном полете в состыкованном состоянии увеличиваются нагрузки, которые должны выдерживаться замками на стыке. Пришлось усилить эти замки, но и этого оказалось недостаточно. Нам удалось изменить конфигурацию стыковочных шпангоутов и ввести специальные пазы, к которым сохранялся доступ со стороны герметичного переходного тоннеля. Пазы предназначались для того, чтобы космонавты могли вручную вставить специальные зажимы и дополнительно стянуть стык.

Эта нехитрая на первый взгляд модификация, несложная конструкция винтовых зажимов, ставших похожими на обычные струбцины, оказалась чрезвычайно важной для всего ОК «Мир», для всей длительной программы полета. Только благодаря этим зажимам, которыми оборудовали все стыковочные агрегаты, удалось обеспечить прочность стыка. Когда размеры и масса станции возросли в несколько раз, только они, наши зажимы, обеспечивали нужную несущую способность, несколько лет спустя нам пришлось отказаться от включения приводов, закрывавших замки на самой станции, так как их ресурс полностью исчерпали. Так, небольшая модификация предвосхитила требование на много лет вперед и позволила выполнить сложную длительную программу полета.

Еще лет через десять эти винтовые зажимы привели в восторг специалистов НАСА по надежности и безопасности космических полетов. Руководить — это значит предвидеть.

Тогда, в апреле 1987 года, все это было впереди, а пока что первый модуль «Квант» завис не до конца состыкованным, и между стыками оставались какие?то 50 миллиметров. Версий, как уже говорилось, было много. Часть из них быстро рассеялась после анализа документации, протоколов испытаний и предполетных фотографий, сделанных на космодроме. Правда, на фотографиях обнаружили блики, кто?то принял их даже за лишние детали. Но и эту версию отбросили. Активный агрегат «Кванта» проходил контрольную стыковку с эталоном уже на космодроме, лишь за три месяца до старта.

Вероятнее всего, что?то постороннее попало в стык уже в полете. Оставшиеся версии распадались на три группы, в зависимости от того, куда попал этот предмет: или между торцами модуля и станции, или между стыковочными шпангоутами, или между стыковочным механизмом и приемным конусом.

Для проверки всех трех версий мы провели наземные эксперименты, создав препятствия в разных местах. Главное внимание обращалось при этом на показания телеметрических датчиков ЛПШ, БПР, БПТ. Если земные данные совпадали с небесными, значит — теплее. Нельзя сказать, что нашли, но можно считать — уже на правильном пути.

Таким путем удалось еще более сузить круг правдоподобных версий, и даже определить, в какой плоскости следовало искать препятствие. И не только это.

Картина действительно получалась различной, в зависимости от того, помещалось ли препятствие между стыковочными шпангоутами или между конусом и ограничителем на стыковочном механизме. Это тот самый ограничитель круглой формы в виде воротника, введенный еще в апреле 1971 года, после той трагической поломки на орбите, и получивший образное название «жабо». При упоре в это «жабо» происходило смещение шпангоутов, которые при этом оставались параллельными друг другу. Торцы перекашивались, если препятствие возникало между ними. Это оказалось существенным для анализа и предстоявшего ремонта в космосе.


Перейти на страницу:
Изменить размер шрифта: