Длительный полет, дополнительная аппаратура и программа требовали большей энерговооруженности. На новых ДОСах установили дополнительные СБ, но и этого оказалось мало. Поворачивать громоздкую станцию целиком стало трудно. Чтобы повысить эффективность, еще раньше ввели систему ориентации батарей на Солнце. Теперь она стала классической. Для «Салютов» ее стали разрабатывать наши коллеги из ВНИИ электромеханики.
В целом ДОСы второго поколения, техника и технология, методы ее эксплуатации, процедура отбора и подготовки космонавтов, самого полета и послеполетной реабилитации — все это в совокупности обеспечило рекордно длительные полеты.
На «Салюте-6» установили систему стыковки, разработанную на основе созданных ранее, еще для первых ДОСов. Внешне новые стыковочные агрегаты также мало чем отличались от своих предшественников. Однако небольшие, казалось бы, внутренние изменения стоили нам больших усилий. Изменения касались двух вещей: во–первых, при стыковке требовалось соединить трубопроводы для дозаправки станции топливом, во–вторых, оказалось необходимым существенно повысить несущую способность конструкции. Оба изменения потребовали от нас трудной и длительной отработки. Об этом стоит рассказать подробнее.
Задача объединения трубопроводов, которые соединялись в процессе стыковки, сама по себе уже была непростой. Дело заключалось не только в том, чтобы автоматически состыковать их на орбите после длительного полета на ракете и в космосе. Задача осложнялась тем, что топливные компоненты реактивной системы управления (РСУ), как уже упоминалось, очень агрессивны. Немногие материалы стояли в их среде. Самые стойкие резины не выдерживали длительного контакта с этими азотными компонентами. В то же время требовалась многократная дозаправка в течение нескольких лет полета. Отработка разъемов вылилась в многолетнюю эпопею, которая распалась на несколько этапов. На первых этапах работоспособность обеспечили тем, что выжали максимум возможного из тех резин, которые все же работали в течение ограниченного времени. Лишь позднее, когда готовились к полету ОК «Мир», удалось создать конструкцию, в которой благодаря конструктивным хитростям удалось заменить упругую резину неупругой, даже текучим фторопластом. До сих пор они летают в космос. За «ноу–хау» этих действительно хитрых конструкций потянулись специалисты всего мира.
Помню, как, составляя ТЗ на стыковочный агрегат для первого «Салюта» в конце 60–х годов, мы обсуждали нагрузки, которые должна выдерживать конструкция в состыкованном состоянии. «Какие нагрузки в невесомости?» — возражал проектант В. Бобков. «Давай все же прибавим к 8–10 тоннам, разрывающим стык внутренним давлением, хоть небольшой изгибающий момент», — настаивал я. Сошлись на круглой цифре в 100 килограммометров. Эта величина драматически возрастала с развитием программ ДОСов: за каких?то 10–15 лет она увеличилась на два порядка, в 100 раз!
Именно со станции «Салют-6» резко возросли нагрузки и начались наши очередные трудности. Дело осложнялось тем, что требовалось обеспечить не только прочность с достаточным коэффициентом безопасности, как его называют специалисты. Полагалось заранее, еще на Земле, подтвердить расчеты и экспериментальную пригодность конструкции к длительному полету. Если бы речь шла только о прочности, то испытания не стали бы проблемой — по крайней мере, в части продолжительности.
Мы опять оказались на стыке, в прямом и переносном смысле, в самом узком месте. Осиная талия стыковочных узлов действительно оказалась самой гибкой и тонкой частью космического сооружения. Вспоминая о наставлении сопроматчика из МВТУ, нам пришлось как следует поработать, чтобы самое тонкое место не оказалось самым слабым, чтобы оно не порвалось. Усталость конструкции накапливалась за счет того, что в течение всего полета на станцию (недаром они назывались ДОСами) действовали нагрузки, которые раскачивали ее во все стороны день за днем, месяц за месяцем, год за годом.
Начиная с «Салюта-6» конструкцию пришлось рассчитывать на три основных вида внешних нагрузок, источниками которых являлись, во–первых, система управления движением (СУД), во–вторых, физические упражнения космонавтов, и в–третьих, стыковка. Эти три вида нагружения, три расчетных случая стали, можно сказать, классическими для всех наших последующих проектов.
Система СУД осуществляла ориентацию станции, а ее реактивные управляющие двигатели генерировали силы и моменты, создавали напряжения в элементах конструкции, в том числе на замках стыковочных агрегатов.
Чтобы при длительном полете в невесомости поддержать свой организм, привыкший преодолевать земную тяжесть, космонавты стали ежедневно ходить, бегать и прыгать на орбите. Бег на месте («общепримиряющий», по В. Высоцкому, без обгона) на специально оборудованной беговой дорожке неожиданно превратился, пожалуй, в самое тяжелое испытание для конструкции станции. Как это бывает на гибком мосту, космонавты, бегая по дорожке, стали раскачивать станцию, причем число колебаний постепенно накапливалось и вскоре переваливало за миллионы.
И, наконец, при стыковке вся конструкция, образно говоря, вздрагивала от соударения корабля и станции. Когда второй корабль стыковался к противоположному причалу, первый, уже пристыкованный, чувствовал динамику стыковки, а эти нагрузки оказались самыми большими по амплитуде.
Особенностью всех этих нагрузок являлся их динамический характер. При анализе возникали две существенные проблемы: как определить величину динамических сил и как определить прочность при циклическом, многократном нагружении, когда проявлялась усталость материалов.
Во многих областях техники, в первую очередь для подвижных аппаратов, таких как самолеты, корабли, автомобили, эти проблемы являются типичными. Инженеры учитывают эти нагрузки при помощи так называемого коэффициента динамичности. Например, автомобиль весит одну тонну, а на неровной дороге на его подвеску действует сила до 1500 килограмм, этот коэффициент равен 1,5. Другой пример: вес самолета 100 тонн, при посадке на Землю на шасси действует нагрузка в 200 тысяч килограмм — значит, коэффициент динамичности равен 2. Пример из области стыковки: при столкновении корабля и станции может возникнуть сила в 1,5 тонны. На такую нагрузку рассчитывается стыковочный механизм. Как нагружается при этом стык второго корабля? Это непростая задача. Даже дать определение коэффициенту динамичности непросто, а вычислить его еще сложнее.
Это типичная задача, для решения которой нужны математические модели и компьютеры. Для расчета требуется задаться некоторыми характеристиками конструкции и начальными условиями, которые заранее, на Земле, не известны. Поэтому результаты моделирования могут быть консервативными (максимальные оценки) или слишком оптимистичными (оценки минимальные). Проверить эти данные экспериментально в полете сложно, да и единичный, случайный эксперимент может почти ничего не доказать.
Чтобы космические системы и конструкции стали надежными, их дублируют, вводят резервы. Корпуса кораблей и станции практически невозможно дублировать, поэтому резервами конструкторов и прочнистов являются запасы прочности. Естественно, здесь тоже не обходится без перестраховок, без излишеств.
Нетрудно понять позицию специалистов, которые занимаются сложным анализом и моделированием и не хотят рисковать: лучше спать спокойно. Это лишь один далеко не единственный из факторов, почему в конструкцию нередко закладываются слишком большие запасы. Чтобы рационально спроектировать летательный аппарат, из которого выжато все, что можно, чтобы он получился быстрым и маневренным, чтобы он летал, необходим главный конструктор. Этот технический и организационный лидер должен понимать существо основных проблем, обладать интуицией и большими полномочиями. В то же время ему нередко приходится рисковать ради достижения общей цели. Если дать полную свободу специалистам, разработчикам отдельных систем, самолет никогда не взлетит. Однако такой подход относится не только к проектированию самолета в целом. Хорошо, если у каждой системы или агрегата есть свой главный конструктор.