Значение изложенного выше «принципа вычитания» заключается в следующем: два символа могут выполнить работу пяти. Зачем писать VIIII, если можно ограничиться IX, или DCCCC, если хватит СМ? Теперь можно записать 1964 в виде MCMLXIV (семь символов) вместо приведенного ранее числа MDCCCCLXIIII (двенадцать символов). Но теперь порядок записи буквенных символов приобрел значение. Их больше нельзя переставлять. К примеру, MMCLXVI (те же самые семь символов, но в другом порядке) — это уже 2166.

В древности «принципом вычитания» пользовались эпизодически; окончательно он был принят только в Средние века. Могу предложить забавное объяснение причин столь длительной задержки. Это связано с написанием цифры IV (четыре). Эти же символы являются первыми в имени главного римского божества IVPITER. Вполне вероятно, римляне не желали оскорблять своего бога частым употреблением начальных букв его имени. Даже сегодня на циферблатах часов, где использованы римские цифры, вместо IV обычно указывается IIII. И это вовсе не потому, что изготовители часов не приемлют «принципа вычитания»; ведь цифра 9 всегда обозначается IX, а пе VIIII.

Используя приведенные выше символы, мы можем довести счет до 4999. Это число будет выглядеть следующим образом: ММММDСС-ССLХХХХVIIII, или, используя принцип вычитания, ММММСМХСIХ. Вы можете предположить, что 5000 = МММММ, но это не совсем так. Строго говоря, в римской системе символы никогда не повторялись более четырех раз. Для этого всякий раз вводился новый символ: IIIII = V, ХХХХХ — L, ССССС = D. Но чему тогда равно МММММ?

Для 5000 не ввели специальной буквы. В древности в повседневной жизни в таких больших числах просто не было необходимости. Если же ученые или сборщики налогов и умели обращаться с подобными величинами, они не передавали свои навыки простым людям.

Один из способов преодолеть барьер 5000 — использовать черту над буквой для обозначения тысяч. Таким образом, V это уже не 5, а 5000. Другой способ написания больших чисел — вернуться к примитивному символу I и, добавляя вокруг него круглые скобки, увеличивать число нулей. ((1))= 10 000, а (((I))) = 100 000. Так же как 500 = I) или D, 5000 = I)), 50 000 = I))).

Как и римляне, греки для обозначения тысяч использовали специальные отметки. Греки даже пошли дальше, введя особые отметки для десятков тысяч и миллионов (но крайней мере, это сделали некоторые греческие писатели). Тот факт, что римляне не довели дело до логического завершения, не является удивительным. Римляне гордились тем, что не являются высокими интеллектуалами. Однако тот факт, что греки здесь тоже оказались не на высоте, удивляет меня безмерно.

Предположим, что вместо введения специальных значков только для больших чисел было решено использовать специальные знаки для всех групп, начиная с единиц. Если придерживаться системы, изложенной мною в начале настоящей главы, где ' обозначает единицы, — это десятки, + сотни, а = тысячи, тогда можно обойтись одним набором из девяти символов. Мы сможем изображать каждую цифру под соответствующим значком, обозначающим тип группы: = + — '. Тогда число 2581 будет изображаться следующим образом (с использованием только букв от А до I и упомянутых выше значков):

= + — '

ВЕНА.

А 5555 будет записано так:

= + — '

Е Е Е Е.

Причем одинаковые символы Е перепутать невозможно, так как один из них обозначает 5, другой — 50, третий — 500, а четвертый 5000. Используя дополнительные обозначения для 10 000, 100 000, миллионов и т. д., можно записать любую цифру, как бы велика она ни была.

Правда, не думаю, чтобы такая система могла завоевать популярность. Даже если бы какой-нибудь грек придумал нечто подобное, ему наверняка бы не понравилась необходимость аккуратно выписывать эти маленькие значки. Во времена ручного переписывания документов лишние знаки означали дополнительный труд, и писцы наверняка воспротивились бы такой безрадостной перспективе.

Кто-то может решить, что дополнительные обозначения вообще не нужны. В конце концов, соответствующие группы можно записывать справа налево в порядке возрастания величины. Единицы расположатся в крайнем правом ряду, левее будут находиться десятки, дальше сотни и т. д. В гаком случае ВЕНА = 2581, а ЕЕЕЕ = 5555 и без дополнительных значков сверху.

Совершенно верно. Тут возможна другая сложность. А если в каком-то числе не будет группы десятков или единиц? Как быть, к примеру, с числом 10 или 101? Первое состоит из одной группы десятков без единиц, а второе — из групп сотен и единиц, но без десятков. Если использовать принятые обозначения, числа можно записать следующим образом: Ā' и А+Ā', только теперь без маленьких значков над буквами обойтись нельзя. Если попробовать, сразу станет ясно, что невозможно отличить А, обозначающую 1, от А, обозначающей 10, или АА = 101 от АА = 11 или АА =110.

Можно попробовать оставить пробел, обозначив 101 как А А. Но в эпоху ручного переписывания пробел наверняка очень быстро потерялся бы, превратив число в АА. Не менее вероятен и обратный процесс — трансформации АА в А А. И как обозначить пробел в конце числа? Я уверен, если греки и думали о чем-то подобном, то пришли к выводу, что пробелы между символами в числах сделают упрощение практически неприменимым. Они решили бы, что проще обозначить J = 10, а SА = 101; что же касается маленьких значков, ну их к Гадесу!

Никто из греков, даже сам великий Архимед, не подумал, что не обязательно вводить в символ пробелы. Их легко можно заполнить каким-нибудь ничего не значащим символом. Например, поставим вместо пробела значок $. Тогда число 101 можно записать в виде А+$-Á. Если мы так и поступим, пробелов не будет, да и в значках над буквой больше нет необходимости. Теперь 1 — это А, 10 — А$, 100 — А$$ и т. д. Любое число, как бы велико оно ни было, может быть записано с помощью девяти букв и одного символа, ничего не обозначающего.

Казалось бы, что может быть проще? После того, как это придумано!

И тем не менее человечеству потребовалось больше пяти тысячелетий, считая от появления первых обозначений чисел, чтобы додуматься до введения в практику символа пустоты. К сожалению, имя гения, которому принадлежит эта величайшая заслуга, осталось неизвестным человечеству. Мы только знаем, что он был индусом и жил не позднее IX века.

Индусы назвали новый символ sunya, что означает «пустой». Этот символ вскоре был принят арабами, назвавшими его sifr. Это слово тоже обозначает «пустой», но уже на арабском языке. Позже оно было преобразовано в современные термины cipher (ноль), а потом через zefirum в zero.

Новая система, названная арабской (поскольку европейцы узнали ее от арабов), очень медленно добралась до стран Запада и вытеснила римскую.

Арабские числительные возникли в тех краях, где никогда не использовали латинский алфавит, поэтому форма цифр ничем не напоминала буквы римского алфавита. С их появлением была устранена путаница между словами и цифрами, а получившая широкое распространение yematria постепенно утратила свое значение и перестала занимать умы широких масс.

Арабские цифры, которыми все мы сегодня пользуемся, — это 1, 2, 3, 4, 5, 6, 7, 8, 9 и конечно же 0. Мы привыкли к этим цифрам и, пожалуй, даже не осознаем, насколько полно. К примеру, если в настоящей главе вам что-то показалось странным или сомнительным, то, возможно, оттого, что я в ней намеренно не приводил ни одного арабского числительного.

Мы все знаем, насколько появление арабских цифр упростило арифметические вычисления. Они избавили людей от множества ненужных забот, в основном благодаря присутствию зеро, которое является воистину бесценным. Необыкновенная важность зеро нашла свое отражение и в английском языке. Ведение арифметических подсчетов носит слегка устаревшее название ciphering (cipher — ноль), а процесс расшифровки какого-либо кода — deciphering.

Теперь, если вы вернетесь к названию этой главы, то поймете, что его следует понимать буквально. Ничего считается! И появление специального символа для обозначения ничего является величайшим открытием человечества.


Перейти на страницу:
Изменить размер шрифта: