Может быть, загадку можно разъяснить, если воспользоваться таким искусственным воздушным океаном, который показывал бы нам, как изменяется давление воздуха? Пусть это будет, например, синий воздушный океан, причем такой, что цвет его становится тем более темносиним, чем больше давление воздуха. Попытаемся при помощи этого океана выяснить, где и как рождается внутри двигателя то повышенное давление, которое заставляет вытекать из него газы с такой большой скоростью. Но увы, и этот синий океан не принес бы нам большой пользы. Поместив в такой воздушный океан двигатель, мы увидим, что за решеткой воздух сразу густо синеет, значит он сжимается и его давление резко повышается. Но как это происходит? Ответа на этот вопрос мы все же не получим. Потом в длинной выходной трубе воздух снова бледнеет, следовательно, в ней он расширяется; благодаря этому расширению скорость истечения газов из двигателя оказывается такой большой.

В чем же все-таки заключается секрет «таинственного» сжатия воздуха в пульсирующем двигателе?

Этот секрет, оказывается, можно разгадать, если применить для изучения явлений в двигателе киносъемку «лупой времени». Если прозрачный работающий двигатель сфотографировать в синем воздушном океане, делая тысячи снимков в секунду, а затем показать получившийся фильм с обычной частотой 24 кадра в секунду, то перед нами на экране медленно развертывались бы процессы, стремительно происходящие в двигателе. Тогда нетрудно было бы понять, почему не удается рассмотреть эти процессы на работающем двигателе, — они так быстро следуют один за другим, что глаз в обычных условиях не успевает следить за ними и фиксирует лишь какие-то усредненные явления. «Лупа времени» позволяет «замедлить» эти процессы и делает возможным их изучение.

Вот в камере сгорания двигателя за решеткой произошла вспышка — впрыснутое топливо воспламенилось и давление резко повысилось (рис. 41). Такого сильного повышения давления не произошло бы, конечно, если бы камера сгорания за решеткой была непосредственно сообщена с атмосферой. Но она соединена с ней длинной, относительно узкой трубой: воздух в этой трубе служит как бы поршнем; пока происходит разгон этого «поршня», давление в камере повышается. Давление повысилось бы еще сильнее, если бы на выходе из камеры имелся какой-нибудь клапан, закрывающийся в момент вспышки. Но этот клапан был бы очень ненадежным — ведь его омывали бы раскаленные газы.

Воздушно-реактивные двигатели i_048.png

Рис. 41. Так работает пульсирующий воздушно-реактивный двигатель:

а — произошла вспышка топлива, клапана решетки закрыты; б — в камере сгорания создалось разрежение, клапана открылись; в — воздух входит в камеру через решетку и через выхлопную трубу; г — так меняется по времени давление в камере сгорания работающего двигателя

Под действием повышенного давления в камере сгорания продукты горения и еще продолжающие гореть газы устремляются с большой скоростью наружу, в атмосферу. Мы видим, как клубок раскаленных газов мчится по длинной трубе к выходному отверстию. Но что это? В камере сгорания позади этого клубка давление понизилось так же, как это происходит, например, за движущимся в цилиндре поршнем; воздух там стал светлосиним. Вот он все светлеет и, наконец, становится светлее окружающего двигатель синего океана. Это значит, что в камере создалось разрежение. Тотчас же лепестки стальных пластинчатых клапанов решетки,, служащих для закрывания отверстий в ней, отгибаются под напором атмосферного воздуха. Отверстия в решетке открываются, и внутрь двигателя врывается свежий воздух. Понятно, что если входное отверстие двигателя закрыть, как это изобразил на шуточном рисунке (рис. 42) художник, то двигатель работать не сможет. Следует отметить, что похожие на тонкое лезвие безопасной бритвы стальные клапаны решетки, являющиеся единственными движущимися частями пульсирующего двигателя, обычно и ограничивают срок его службы — они выходят из строя через несколько десятков минут работы.

Воздушно-реактивные двигатели i_049.png

Рис. 42. Если прекратить доступ воздуха в пульсирующий воздушно-реактивный двигатель, то он моментально заглохнет (Можно «бороться» с самолетами-снарядами и так. Шуточный рисунок, помещенный в одном из английских журналов в связи с применением гитлеровцами самолетов-снарядов для бомбардировки Лондона)

Все дальше движется темносиний «поршень» горячих газов по длинной трубе к выходному отверстию, все больше свежего воздуха поступает через решетку в двигатель. Но вот газы вырвались из трубы наружу. Мы с трудом могли разглядеть клубки раскаленных газов в струе, когда находились в испытательном боксе, так быстро они следовали один за другим. Ночью же в полете пульсирующий двигатель оставляет за собой отчетливо видный светящийся пунктир, образованный клубками раскаленных газов (рис. 43).

Рис. 43. Такой светящийся пунктир оставляет за собой летящий ночью самолет-снаряд с пульсирующим воздушно-реактивным двигателем

Как только газы вырвались из выхлопной трубы двигателя, в нее устремился через выходное отверстие свежий воздух из атмосферы. Теперь в двигателе мчатся навстречу друг другу два урагана, два воздушных потока — один из них вошел через входное отверстие и решетку, другой — через выходное отверстие двигателя. Еще мгновение, и давление внутри двигателя повысилось, цвет воздуха в нем стал таким же синим, как и в окружающей атмосфере. Лепестки клапанов захлопнулись, прекратив этим вход воздуха через решетку.

Но воздух, поступивший через выходное отверстие двигателя, продолжает по инерции двигаться по трубе внутрь двигателя, и в трубу засасываются из атмосферы все новые порции воздуха. Длинный столб воздуха, движущийся по трубе, как поршень, сжимает воздух, находящийся в камере сгорания у решетки; цвет его становится более синим, чем в атмосфере.

Вот что, оказывается, заменяет компрессор в этом двигателе. Но давление воздуха в пульсирующем двигателе значительно ниже, чем в турбореактивном двигателе. Этим, в частности, объясняется то, что пульсирующий двигатель менее экономичен. Он расходует значительно больше топлива на килограмм тяги, чем турбореактивный двигатель. Ведь чем больше повышается давление в воздушно-реактивном двигателе, тем большую полезную работу он совершает при том же расходе топлива.

В сжатый воздух снова впрыскивается бензин, вспышка — и все повторяется сначала с частотой в десятки раз в секунду. В некоторых пульсирующих двигателях частота рабочих циклов достигает ста и более циклов в секунду. Это значит, что весь рабочий процесс двигателя: всасывание свежего воздуха, его сжатие, вспышка, расширение и истечение газов — длится около 1/100 секунды. Поэтому нет ничего удивительного в том, что без «лупы времени» нам не удавалось разобраться в том, как работает пульсирующий двигатель.

Такая периодичность работы двигателя и позволяет обойтись без компрессора. Отсюда возникло и само название двигателя — пульсирующий. Как видно, секрет работы двигателя связан с решеткой на входе в двигатель.

Но, оказывается, пульсирующий двигатель может работать и без решетки. На первый взгляд это кажется невероятным — ведь если входное отверстие не закрыть решеткой, то при вспышке газы потекут в обе стороны, а не только назад, через выходное отверстие. Однако если мы сузим входное отверстие, т. е. уменьшим его сечение, то можно добиться того, что основная масса газов будет вытекать через выходное отверстие. В этом случае двигатель все же будет развивать тягу, правда меньшую по величине, чем двигатель с решеткой. Такие пульсирующие двигатели без решетки (рис. 44, а) не только исследуются в лабораториях, но и устанавливаются на некоторых экспериментальных самолетах, как это изображено на рис. 44, б. Исследуются и другие двигатели этого же типа — в них оба отверстия, и входное и выходное, обращены назад, против направления полета (см. рис. 44, в); такие двигатели получаются более компактными.


Перейти на страницу:
Изменить размер шрифта: