Шары-зонды нужны не только службе погоды. Например, и Будапеште они запускаются регулярно четырежды в сутки, чтобы следить за уровнем загрязненности воздуха над городом.
Особенно важной оказалась роль шаров-зондов в исследовании стратосферы — верхних слоев атмосферы. Как ни далеки они от нас, роль их в формировании погоды и в других важных для жизни на Земле явлений велика.
Как можно изучать эти слои? Самолеты на высотах тридцати — сорока километров еще не летают, космические ракеты их стремительно пересекают, геофизические исследовательские ракеты бывают на нужных высотах тоже короткие мгновения. И только высотным шарам-зондам под силу длительное пребывание для исследований.
Одним из наиболее важных полученных ими научных результатов стало, в частности, открытие в стратосфере, правда, на меньших высотах, так называемых струйных течений — гигантских воздушных «рек» шириной в сотни километров и высотой в несколько километров. Скорость течения этих «рек» иногда превышает сотню километров в час — постоянно дующий ураган. Ясно, какое значение имело это открытие для высотной авиации.
Немало других важных научных сведений о стратосфере получено учеными с помощью шаров-зондов. Вот один из последних примеров: в 1971 году австралийские ученые запустили шары-зонды, доставившие из стратосферы пробы воздуха — оказалось, что осенью этого года сильно, до пятисот раз, возросло содержание пыли в стратосфере. Что было тому причиной? Одна из многих загадок стратосферы.
Важность изучения запыленности и вообще загрязнения стратосферы нужно особенно подчеркнуть. Ученые уделяют этому в последнее время большое внимание. Пыль и другие частицы, так называемый аэрозоль, поглощают солнечные лучи, снижая температуру воздуха у земли. Если пыли станет больше некоторого предела, то на Земле может начаться новое великое оледенение. По одной из гипотез, неоднократно повторявшиеся в прошлом ледниковые периоды, когда ледники наступали, продвигаясь далеко к югу, вызывались именно тем, что запыленность атмосферы возрастала в результате столкновения Земли с кометой и ее разрушения.
Ученые многих стран объединяют свои усилия, чтобы следить за состоянием атмосферы, и большую помощь в этом оказывают воздушные шары.
Большой интерес представляет и полет человека в стратосферу на воздушном шаре, который обычно называют в этом случае стратостатом. Такие полеты совершались у нас в стране и за рубежом. Впервые его совершил в 1931 году известный ученый Огюст Пикар — он достиг высоты около шестнадцати километров.
В 1933 году советский стратостат «СССР-1» с тремя стратонавтами на борту достиг высоты девятнадцать километров.
Сенсационное сообщение облетело мировую прессу 31 января 1934 года — русские совершили небывалый полет на стратостате «Осовиахим-1» — достигли высоты двадцать два километра. Героический экипаж погиб из-за сильного обледенения стратостата и обрыва гондолы. Имена пилота П. Федосеенко, конструктора А. Васенко и ученого И. Усыскина навсегда вписаны золотыми буквами б историю штурма стратосферы и космоса.
Полеты стратостатов проложили человеку путь в космос. На высотах, куда залетали стратостаты, воздуха уже почти нет, там — преддверье космоса. Человека приходится помещать в герметичную гондолу, очень напоминающую кабину космического корабля со всеми его системами. Иногда это — стальной шар, как у стратостата «Осоавиахим», иногда — цилиндр со сферическими днищами — такая гондола была у американского стратостата, на котором пилот Д. Симонс совершил в 1957 году тридцатидвухчасовой рекордный полет на высоту тридцать один километр.
Но всегда гондола до отказа забита аппаратурой, человеку в ней тесно. Так было, в частности, и с гондолой молодого французского ученого О. Дольфюса, поднявшегося в 1959 году в стратосферу на необычном аэростате — очень похожей на связку репчатого лука гирлянде соединенных тросом ста пяти обычных водородных шаров-зондов диаметром по два метра. Длина этой связки, насмерть перепугавшей летчиков самолетов, достигала почти полукилометра!
Слишком опасными и трудными оказались полеты стратонавтов. Не удивительно, что их перестали совершать, когда стало возможно вести исследования с помощью автоматических стратостатов. Они забираются на высоты до сорока и более километров — таковы плоды союза химии с воздушной подушкой. Чтобы унести на эту огромную высоту многочисленную научную аппаратуру, размеры шара должны быть очень большими.
Вот как выглядел высотный аэростат, запущенный в США в сентябре 1968 года и достигший почти пятидесяти километров.
Высота аэростата вместе с приборным контейнером — 180 метров. Перед стартом аэростат был заполнен гелием далеко не полностью — с высотой он будет расширяться. При старте объем шара составлял 935 кубических метров, а на рекордной высоте он возрос почти в девятьсот раз.
Сто профессий воздушного шара
Исследование верхних слоев атмосферы стало не единственным полезным делом автоматических стратостатов.
На одном из них контейнер с приборами был заменен фотоконтейнером. С высоты тридцати километров автоматически производились снимки земной поверхности — они были доставлены на парашюте на Землю и оказались отличного качества.
Если запустить со стратостата небольшую исследовательскую ракету, то она сможет достичь гораздо больших высот, например вместо двадцати пяти при пуске с Земли — ста четырех километров.
Велико значение стратостатов в штурме космоса. Мало того, что они были первыми в преддверии космического пространства. С помощью стратостатов подвергались испытаниям многие системы и части будущих космических аппаратов. Сбрасывание со стратостатов моделей космических спускаемых аппаратов оказалось важным этапом полетов к Марсу и Венере.
Пожалуй, наибольший успех выпал на долю автоматических стратостатов, выступавших в роли астрономов. Это самый простой и доступный способ вывода астрономических приборов за пределы плотной, пыльной, взвихренной атмосферы, так мешающей астрономическим наблюдениям. Мешает астрономам дневной свет, голубой цвет неба, облака, всегда не вовремя закрывающие небосвод. Огорчения приносит непрерывное «дрожание» атмосферы, вызывающее мерцание звезд, оно не позволяет полностью использовать возможности астрономических приборов — изображение в них размывается.
Только на больших высотах можно вести наиболее полные наблюдения небесных тел, регистрируя, помимо испускаемого ими видимого света, электромагнитное излучение на более коротких и более длинных волнах.
Коротковолновое ультрафиолетовое излучение, еще более коротковолновые рентгеновы и гамма-лучи, длинноволновое инфракрасное излучение и еще более длинные радиоволны, наконец, потоки мчащихся частиц космических лучей — все эти виды излучения обычно не пропускаются земной атмосферой. Они доступны вне плотной атмосферы и способны сообщить, уже сообщили, огромное число новых, исключительно важных научных сведений.
Поэтому так упорно стремится космонавтика создать астрономические обсерватории на околоземных орбитах, немало автоматических космических обсерваторий уже создано, впереди создание обсерваторий на обитаемых орбитальных космических станциях. Их прообразом были пилотируемый корабль «Союз-13» и две орбитальные станции «Салют», на борту которых находились астрофизические обсерватории «Орион».
Возможности космонавтики отнюдь не перечеркивают значение астрономических обсерваторий на воздушных шарах — автоматических стратостатах. Дешевизна, простота, удобство исследовательской аппаратуры всегда высоко ценились наукой.