Каким бы ни было наше окончательное мнение, — по этому вопросу существуют различные точки зрения, — ясно, что работа Лэнда выявила существование сложных добавочных мозговых процессов, связанных с обработкой сенсорной информации при организации ощущений в восприятие предметов. Было бы упрощением представлять себе зрение прежде всего как работу глаза и забывать о мозге.
Весьма примечательно, что даже распространенная форма нарушения цветового зрения — смешение красного цвета с зеленым — была открыта лишь в XIX столетии, когда химик Джон Дальтон обнаружил, что он не может четко различать некоторые вещества по их цвету, хотя другие люди могли это делать без труда. Причина этого отчасти заключается в том, что мы называем предметы, пользуясь разными критериями. Мы называем траву зеленой, хотя не знаем, одинаково дли ощущение, возникающее при взгляде на траву у разных людей. Трава — определенный вид растений, растущих на лужайках; ощущение цвета, которое она вызывает, мы все называем «зеленый», но мы узнаем траву не только по цвету, но и по другим признакам — форме листьев, густоте и т. д., и если мы склонны путать цвета, существуют обычно дополнительные признаки, достаточные для того, чтобы определить это растение как траву. Мы знаем, что она должна быть зеленой, и называем ее зеленой, даже если это вызывает сомнение.
Однако когда химик определяет вещества, случается, что вещество, в бутылке может быть определен© только по цвету, и тогда сама способность химика определять и (называть цвета должна подвергнуться испытанию. В тестах на цветовое зрение всегда используются изолированные цвета в качестве единственного определяющего предмет признака, и тогда легко обнаружить, обладает ли испытуемый нормальной способностью различать цвета, или он видит единый цвет там, где другие люди видят разные цвета.
Как уже говорилось выше, наиболее распространенным нарушением цветового зрения является неумение различать красное и зеленое. Существует, однако, (много других видов нарушений. Смешение красного и зеленого встречается, как ни странно, весьма часто. Приблизительно 10 % мужчин имеют этот дефект в довольно яркой форме; у женщин он встречается крайне редко. Менее распространенным является смешение зеленого и синего. Исходя из трех предполагаемых цветовых рецепторных систем, цветовую слепоту подразделяют на три главных вида; раньше их называли просто слепотой на красный, зеленый и синий цвета, но теперь избегают этих названий. У некоторых людей обнаруживаются полное отсутствие одного из трех видов колбочковых цветовых систем, их называют теперь протанопы, дейтеранопы и тританопы (что соответствует дефектам первой, второй и третьей цветочувствительных систем), однако это не внесло большей ясности. Для этих людей достаточно смешать только два окрашенных световых потока, чтобы получить все спектральные цвета, доступные их восприятию. Таким образом, результаты работы Юнга по смешению цветов применимы к большинству людей, но не к исключительным случаям цветовой слепоты. Чаще встречается не полное выпадение цветового зрения, а уменьшение чувствительности к некоторым цветам. Эти нарушения обозначают как протанопия, дейтеранопия и тританопия. Последняя форма, тританопия, встречается чрезвычайно редко. Людей, страдающих этими дефектами, характеризуют как имеющих аномальное цветовое зрение. Это означает, что, хотя им требуется три окрашенных световых потока, чтобы получить доступные их восприятию цвета спектра, им нужны иные пропорции этих трех составляющих, чем остальным людям.
Те пропорции, в которых надо сметать красный и зеленый цвета, чтобы получить монохроматичный желтый, являются самым важным показателем аномалии цветового зрения. Лорд Рэлей в 1881 году обнаружил, что людям, которые путают красный цвет с зеленым, требуется большая интенсивность красного или зеленого, чтобы они увидели желтый цвет. Для исследования цветового зрения изготовлены специальные инструменты, которые создают монохроматически окрашенное поле, близкое по цвету к полю смешанного красно-зеленого цвета. Соотношение интенсивностей красного и зеленого цвета в смеси можно изменять до тех пор, пока смешанный цвет не будет восприниматься наблюдателем точно таким же, как и монохроматический желтый. Деления шкалы отражают эти пропорции, они-то и служат показателем степени нарушения цветового зрения — степени протанопии или дейтеранопии. Этот инструмент называется аномалоскопом.
Желтый цвет кажется чистым цветом, поэтому принято «считать, что существует специальный набор рецепторов, чувствительных к желтому цвету. Однако с помощью аномалоскопа можно довольно просто показать, что желтый цвет фактически всегда возникает при смешении в определенных пропорциях красного и зеленого цветов.
Наблюдатель настраивает аномалоскюп таким образом, чтобы монохроматический и получаемый путем смешивания желтый цвета были идентичны. Затем он смотрит на ярко-красный свет, чтобы глаз адаптировался к красному. После адаптации сетчатки к красному цвету он вновь смотрит в аномалоскоп, и его просят оценить, продолжают ли совпадать те же два поля по цвету. Он будет видеть оба поля зелеными, и они будут одного и того же зеленого цвета. Совпадение полей не нарушается при адаптации к красному цвету, так что наблюдателю не потребуются иные пропорции красного и зеленого цвета в смеси, чтобы получаемый цвет совпал с монохроматическим желтым. Нельзя, следовательно, на основании показаний аномалоскопа сказать, что наблюдатель адаптировался к красному цвету, хотя сам наблюдатель воспринимает совершенно иной цвет после адаптации — ярко-зеленый вместо желтого. То же самое происходит и при адаптации к зеленому цвету — оба поля будут казаться наблюдателю одного и того же красного цвета. Совпадение грето® продолжает сохраняться (рис. 8, 5).
Рис. 8, 5. Существует ли специальный рецептор, чувствительный к желтому цвету? Данный эксперимент дает ответ на этот вопрос. Он проводится с помощью аномалоскопа — аппарата, дающего поле смешанного красно зеленого цвета (видимого желтым), которое кажется идентичным соседнему полю монохроматического желтого цвета. Адаптация к красному или зеленому цвету не нарушает совпадения двух полей по цвету для наблюдателя; из этого опыта следует, что не существует отдельного механизма, ответственного за восприятие желтого цвета, — желтый цвет всегда виден при совместной работе рецепторных систем, чувствительных к красному и зеленому цвету.
Если бы, однако, существовал специальный вид рецепторов, чувствительных к желтому цвету, это бы не произошло. Специальные, чувствительные к желтому цвету рецепторы, давали бы при монохроматическом поле ощущение желтого цвета, несмотря на адаптацию к красному или зеленому цвету, приводящую к изменению цвета смешанного поля. Простые рецепторы не могли бы давать при (адаптации сдвиги цветов на спектральной шкале. Но желтый цвет, видимый при совместной работе рецепторных систем, воспринимающих красный и зеленый цвета, должен был бы измениться после того, как изменится чувствительность той или другой системы под влиянием адаптирующего цвета. Таким образом, не могут существовать две различные системы, ответственные за восприятие цвета двух полей, или на эти две системы по-разному воздействует адаптация к окрашенному свету. Следовательно, не существует специальных рецепторов, чувствительных к желтому цвету.
Этот эксперимент можно повторить и с другими цветами со сходным результатом, показывающим, что ни один цвет не воспринимается специальной системой рецепторов. Те же самые результаты получены также и у аномальных наблюдателей: их первоначальное восприятие цвета было иным, но раз установленные соотношения компонентов после адаптации сохранялись неизменными.