Восприятие не определяется просто совокупностью стимулов, скорее это динамический поиск наилучшей интерпретации имеющихся данных. Такими данными является сенсорная информация, а также знание других особенностей предмета. Трудно ответить на вопрос о том, насколько опыт влияет на восприятие, в какой мере мы должны учиться видеть; это и есть тот вопрос, который будет интересовать нас в этой книге. Кажется очевидным, что восприятие выходит за пределы непосредственно данных нам ощущений: показания органов чувств оцениваются нами с разных точек зрения, и обычно мы находим наилучшую оценку и видим вещи более или менее правильно. Однако ощущения не дают нам картину мира непосредственным образом, скорее, они снабжают нас данными для проверки гипотез о том, что находится перед нами. Действительно, мы можем сказать, что воспринятый объект — это возникающая у нас гипотеза, проверенная с помощью сенсорных данных. Куб Неккера — это набор линий, который не содержит ответа на вопрос, какая из двух альтернативных гипотез верна; система восприятия придерживается сначала одной, а затем другой гипотезы и никогда не может прийти к решению, так как однозначного ответа нет. Иногда глаз и мозг приходят к неверному выводу, и тогда мы страдаем галлюцинациями и иллюзиями. Когда принятая гипотеза ведет к ошибочному восприятию, мы заблуждаемся так же, как мы заблуждаемся в науке, когда видим мир искаженным ложной теорией. Восприятие и мышление не существуют независимо друг от друга. Фраза «я вижу то, что я понимаю» — это не детский каламбур, она указывает на связь, которая действительно существует.
2. Свет
Чтобы видеть, нам нужен свет. Это положение может показаться слишком очевидным, чтобы заслуживать упоминания, однако оно не всегда было столь банальным. Платон думал, что зрительное восприятие существует не потому, что свет проникает в глаз, а потому, что частицы, исходящие из глаз, обволакивают окружающие предметы. Трудно представить себе теперь, почему Платон не попытался разрешить проблему с помощью простых экспериментов. Хотя для философов вопрос о том, каким образом мы видим, всегда был излюбленной темой размышлений и теоретических построений, только за последнее столетие эта проблема стала предметом систематических исследований; это довольно странно, поскольку все научные наблюдения зависят от показаний человеческих органов чувств и главным образом от зрения.
В течение последних 300 лет существовали две соперничавшие теории относительно природы света. Исаак Ньютон (1642–1727) считал, что свет — это поток частиц, в то время как Христиан Гюйгенс (1629–1695) утверждал, что свет представляет собой, по всей видимости, колебание небольших эластичных сферических образований, соприкасающихся друг с другом и перемещающихся во всепроникающей среде — эфире. Любое возмущение этой среды, как он считал, будет распространяться во всех направлениях в виде волны, а эта волна и есть свет.
Полемика относительно природы света — одна из наиболее впечатляющих и интересных в истории науки. Основным вопросом на ранних стадиях дискуссии был вопрос о том, распространяется ли свет с определенной скоростью или он достигает цели мгновенно. Ответ на этот вопрос был получен совершенно неожиданно датским астрономом Рёмером (1644–1710). Он изучал затмение четырех ярких спутников, вращающихся вокруг Юпитера, и обнаружил, что периоды между затмениями нерегулярны и зависят от расстояния между Юпитером и Землей.
Рис. 2, 1. Христиан Гюйгенс (1629–1695), портрет неизвестного художника. Гюйгенс доказывал, что свет распространяется как волны через эфир.
Рис. 2, 2. Сэр Исаак Ньютон (1642–1727), портрет Чарлза Джервеса. Ньютон утверждал, что свет состоит из частиц, однако, предвосхищая современные теории, он понимал сложность вопроса и считал, что свет имеет двойственную природу, обладая признаками как частиц, так и волн. Ньютон является автором первого эксперимента, показавшего, что белый цвет представляет собой смешение всех цветов спектра; он также первый высказал мысль о возможности объяснения цветового зрения физическими характеристиками света.
В 1675 г. он пришел к заключению, что этот факт определяется временем, которое требуется, чтобы свет, исходящий от спутников Юпитера, достиг глаза экспериментатора; время возрастает с увеличением расстояния вследствие ограниченной скорости света. Действительно, расстояние от Земли до Юпитера равно примерно 299 274000 км — это в два раза больше, чем расстояние от Земли до Солнца; наибольшая временная разница, которую он наблюдал, равнялась 16 мин. 36 сек. — на этот отрезок времени раньше или позже, чем полагалось по расчету, начиналось затмение спутников. На основании несколько ошибочной оценки расстояния до Солнца он подсчитал, что скорость света равна 308 928 км/сек. Современные знания о диаметре земной орбиты позволяют нам уточнить эту величину и считать ее равной 299 274 км/сек, или 3∙1010 см/сек. Скорость света, таким образом, на небольших расстояниях от Земли измеряется очень точно, и теперь мы рассматриваем ее как одну из основных констант Вселенной.
Вследствие ограниченной скорости света и определенной задержки нервных импульсов, поступающих я мозг, мы всегда видим прошлое. Наше восприятие Солнца запаздывает на 8 мин.; всем известно, что наиболее отдаленный из видимых невооруженным глазом объектов — туманность Андромеды уже больше не существует и то, что мы видим, происходило за миллион лет до появления человека на Земле.
Скорость света, равная 3∙1010 см/сек, строго сохраняется только в полном вакууме. Когда свет проходит через стекло или воду или какую-нибудь другую пропускающую свет среду, его скорость уменьшается в соответствии с показателем преломления света (приблизительно в соответствии — с плотностью этой среды). Это замедление скорости света исключительно важно, так как именно благодаря этому свойству света призма преломляет свет, а линзы создают изображение. Закон преломления (отклонение луча света в зависимости от изменения показателя преломления) был впервые установлен Снеллиусом, профессором математики, в Лейдене в 1621 году. Снеллиус умер в возрасте 35 лет, оставив свои работы неопубликованными. Декарт сформулировал Закон преломления одиннадцать лет спустя. Закон преломления гласит:
«При переходе света из среды А в среду В отношение синуса угла падения к синусу угла преломления света является константой».
Мы можем видеть, как это происходит, из простой диаграммы (рис. 2, 3): если АВ — луч, проходящий через; плотную среду в вакуум (или воздух), то он появится в воздухе под углом i по линии BD.
Закон гласит, что sin i/sin r является постоянной величиной. Эта константа и есть индекс рефракции, или показатель преломления, обозначенный v.
Рис. 2, 3. Свет отклоняется (преломляется) плотной прозрачной средой. Отношение синусов углов, под которыми луч света входит в прозрачную среду и выходит из нее, является постоянной величиной для данного показателя преломления среды. Эта закономерность лежит в основе образования изображения с помощью линз. (Угол отклонения света является также функцией длины световой волны, так что, проходя через призму, луч света расщепляется на цвета спектра.) Буквенные обозначения объясняются в тексте.
Ньютон думал, что частицы света (корпускулы) притягиваются к поверхности плотной среды, Гюйгенс полагал, что преломление возникает вследствие того, что — скорость света уменьшается в плотной среде. Эти предположения были высказаны задолго до того, как французский физик Фуко доказал прямыми измерениями, что скорость света в плотной среде действительно уменьшается. Некоторое время считали, что корпускулярная теория света Ньютона совершенно ошибочна и что свет — это только ряды волн, проходящих через среду, эфир; однако начало нынешнего столетия ознаменовалось важным доказательством того, что волновая теория света не объясняет всех световых явлений. Теперь считается, что свет — это и частицы и волны.