Я надеюсь, что эти вопросы заставят вас хоть на мгновение почувствовать себя в шкуре той любопытной обезьянки, которая созерцает свое отражение в зеркале. Это действительно «хитрые» вопросы. Проверьте их на своих друзьях. Все шансы за то, что они будут озадачены не меньше вашего. Смущенного смеха и сбивчивых попыток объяснения будет хоть отбавляй, но вряд ли кто даст прямой и четкий ответ. По своему обращению с зеркалами взрослые люди больше похожи на кошек и собак, чем на обезьян. Они считают, что отражение в зеркале объяснений не требует, и не пытаются понять до конца, почему именно так «работает» зеркало.

Положение можно запутать еще больше. Совсем легко сделать зеркало, которое вовсе не переставляет правую и левую стороны. Для этого можно взять, например, два прямоугольных зеркала без рамок и поставить их на стол, как показано на рис. 1. Зеркала должны быть взаимно перпендикулярными и касаться друг друга одним краем. Наклонитесь и посмотрите в такое составное зеркало. Если отражение вашего лица уже или шире обычного, отрегулируйте зеркала, пока лицо не станет нормальным. Но будет ли оно таковым? Подмигните правым глазом. При этом ваш двойник вместо того, чтобы подмигнуть левым глазом — то есть глазом, расположенным напротив вашего правого, — подмигнет своим правым глазом. Отражение в таком зеркале отличается от «нормального» зеркального изображения, но оно является истинным, неперевернутым изображением. Вы впервые видите себя в зеркале точно в таком же виде, в каком вас видят другие!

Этот правый, левый мир i_003.png
Рис. 1. Двойное зеркало, дающее необращенное изображение.
Этот правый, левый мир i_004.png
Рис. 2. Изогнутое зеркало, дающее необращенное изображение.

Изготовить зеркало, обладающее описанным свойством, можно и по-другому — слегка изогнув тонкий полированный лист металла (рис. 2). Если вы добьетесь неискаженного изображения, оно будет и неперевернутым. Это легко проверить, моргнув глазом или высунув язык на сторону. Такие изогнутые зеркала были известны уже древним грекам, и Платон описал их в своих диалогах. Про них пишет и древнеримский поэт Лукреций в четвертой книге своей великой научной поэмы «О природе вещей», в главе о зеркалах.

Что случится с вашим отражением, если повернуть одно из таких загадочных зеркал на четверть оборота? Изображение мгновенно перевернется вверх ногами (рис. 3)! Значит, в определенном положении такое зеркало ничего не переставляет в изображении — ни правую сторону с левой, ни верхнюю с нижней. В другом же положении то же самое зеркало меняет местами верх и низ!

Этот правый, левый мир i_005.png
Рис. 3. «Магические» зеркала перевертывают изображение вверх ногами, если их повернуть на 90 градусов.

Предмет явно заслуживает дальнейшего изучения (так, наверное, говорит себе шимпанзе, размышляя о том, что видит в зеркале). Это изучение мы начнем со следующей главы, где разберемся подробно, что происходит в зеркале с одномерными и двумерными геометрическими фигурами. В процессе изучения придется познакомиться со многими удивительными научными истинами. Некоторые из них будут легковесными, а другие — не такими уж пустячными. Два открытия, принадлежащих к числу выдающихся научных свершений века, тесно связаны с проблемой правого и левого и природой зеркальных отображений. Это ниспровержение закона сохранения четности физиками и открытие биологами спирального строения молекулы, которая несет генетический код. Поэтому в последних главах книги русло нашего исследования приведет читателя к самым глубоким и мало изученным водам океана современной науки.

Глава 2. Лайнландия и Флатландия

Мы живем в мире трех измерений, или, как иногда говорят для краткости современные геометры, в 3-пространстве. Каждое твердое тело можно измерить вдоль трех осей: север — юг, восток — запад и верх — низ. (Один приятель рассказывал мне, что у них в колледже преподаватель математики, человек с причудами, объяснял существование этих трех осей следующим образом: сперва он бегом пересекал аудиторию поперек, затем вдоль — по центральному проходу, — а после этого несколько раз подпрыгивал на месте.) Изучением геометрических фигур в 3-пространстве занимается стереометрия. Если мы ограничимся рассмотрением двух измерений, то получим планиметрию, то есть геометрию фигур, начерченных на двумерной поверхности — в 2-пространстве. Можно сделать еще один шаг вниз по этой лестнице и рассмотреть фигуры 1-пространства — одномерные фигуры, которые помещаются на прямой линии. Полезно разобрать природу зеркальных отображений во всех трех перечисленных пространствах.

Начнем с самого простого и познакомимся с Лайнландией, которая состоит из точек, образующих одну-единственную прямую, простирающуюся до бесконечности в обоих направлениях. Забавы ради представим себе, что такая линия населена расой примитивных созданий (жителей Лайнландии), которых мы будем называть одномерцами. Одномерцы мужского пола представляют собой длинные отрезки с «глазом» на одном конце (глаз мы будем изображать просто точкой). Одномерцы женского пола — более короткие отрезки и тоже с глазом на конце. Глаза прорезаются лишь у взрослых одномерцев. Дети — просто маленькие палочки без глаз. Чтобы сделать жизнь одномерцев интереснее, мы должны были бы, конечно, поселить их в мире, состоящем из сложной сети линий, чтобы они могли двигаться взад и вперед по ней, переходя с одной линии на другую, как железнодорожные вагоны на разъездах, но это излишне осложнило бы нашу задачу, так что ограничимся пока единственной линией. Если перпендикулярно линии поместить зеркало, как показано на рис. 4, можно получить зеркальные образы одномерцев. На рисунке изображено целое зеркало, но что касается одномерцев, то их «зеркало» — всего лишь точка на линии. Заметим сперва, что одномерец-младенец является точной копией своего зеркального изображения. Это означает, что мы можем мысленно переместить маленького одномерца по линии в само зеркало, не поворачивая одномерца на плоскости, до тех пор, пока он не совпадет точка в точку со своим зеркальным близнецом. Если такую операцию можно сделать с некоторой фигурой, то мы говорим, что эта фигура симметрична.

Этот правый, левый мир i_006.png
Рис. 4. Одномерцы и их зеркальные изображения.

А симметричны ли взрослые одномерцы? Нет, потому что мы не можем совмещать их с зеркальными изображениями, перемещая по прямой, — дело в том, что концы у взрослых одномерцев разные. Пусть линия, на которой они живут, простирается с востока на запад. Если взрослый одномерец обращен лицом на восток, его зеркальный двойник будет смотреть на запад. Мы, конечно, можем перевернуть одномерца и точно совместить с изображением, но для этого придется «снять» его с линии и произвести поворот в пространстве более высокой размерности — в двумерном мире. Поскольку, не выходя в пространство высшей размерности, нельзя наложить взрослого одномерца на его зеркальный образ, мы говорим, что эта фигура асимметрична.

Есть и другой способ отличить в Лайнландии симметрию от асимметрии. Если фигура симметрична, то у нее всегда есть точка (только одна) в самом центре, которая делит фигуру на две идентичные половинки, причем одна из них есть отражение другой. Такая точка называется центром симметрии. Если мы поместим зеркало перпендикулярно линии в этой точке, оставшаяся часть фигуры вместе со своим отражением будет точно воспроизводить исходную фигуру независимо от того, в какую сторону обращено зеркало. Можно ли считать тогда, что одномерец с глазами с обоих концов симметричен? Да. Такую фигуру можно было бы наложить на зеркальное изображение, и у нее был бы центр симметрии, делящий фигуру на две зеркальные половинки.


Перейти на страницу:
Изменить размер шрифта: