В другой серии опытов того же ученого тяготение действовало через толстый слой свинца (именно, через призму весом 600 пудов, при этом вес шара уменьшался на 2 миллионных грамма).

Однако, интересные данные этих опытов далеко нельзя считать решающими; они нуждаются в тщательной проверке новыми опытами, с целью установить, действительно ли уменьшение веса в данном случае обусловлено поглощением тяготения, а не вызывается какими-либо другими причинами.

К главе VII

4. Падение в мировом пространстве

Полет пушечного ядра Жюля Верна на Луну можно рассматривать как случай падения тела в мировом пространстве под влиянием силы тяготения. Поэтому, прежде чем рассматривать условия его полета, полезно рассмотреть такую, например, задачу из области небесной механики:

Во сколько времени упал бы на Солнце земной шар, если бы по какой-либо причине прекратилось его движение по орбите?

Задачи подобного рода легко разрешаются на основании третьего закона Кеплера: квадраты времен обращения (планет и комет) относятся как кубы их средних расстояний от Солнца. В нашем случае мы можем земной шар, летящий прямо к Солнцу, уподобить воображаемой комете, движущейся по сильно вытянутому и сжатому эллипсу, крайние точки которого расположены: одна — близ земной орбиты, другая — в центре Солнца. Среднее расстояние такой кометы от Солнца, очевидно, вдвое меньше среднего расстояния Земли. Вычислим, каков должен был бы быть период обращения этой воображаемой кометы. Составим на основании третьего закона Кеплера, пропорцию:

Межпланетные путешествия. Полёты в мировое пространство и достижение небесных тел i_037.png

Период обращения Земли равен 365 сутк.; среднее расстояние ее от Солнца примем за единицу, и тогда ср. расст. кометы выразится ½. Пропорция принимает вид:

Межпланетные путешествия. Полёты в мировое пространство и достижение небесных тел i_038.png

откуда

Межпланетные путешествия. Полёты в мировое пространство и достижение небесных тел i_039.png

или:

Межпланетные путешествия. Полёты в мировое пространство и достижение небесных тел i_040.png

Но нас интересует не полный период обращения этой воображаемой кометы, а половина периода, т.-е. продолжительность полета в один конец — от земной орбиты до Солнца: это и будет искомое время падения Земли на Солнце. Оно равно

Межпланетные путешествия. Полёты в мировое пространство и достижение небесных тел i_041.png

Итак, чтобы узнать, во сколько времени Земля упала бы на Солнце, нужно продолжительность года разделить на √32, т.-е. на 5,6.

Легко видеть, что полученная простая формула применима не к одной только Земле, но и ко всякой другой планете и даже ко всякому спутнику. Иначе говоря: чтобы узнать, во сколько времени планета или спутник упадут на свое центральное светило, нужно период их обращения разделить, на √32, т.-е. на 5,6. Меркурий, обращающийся в 88 дней, упал бы на Солнце в 15½ дней; Нептун, период обращения которого равняется 30 нашим годам, — падал бы на Солнце в течение 5½ лет. А Луна упала бы на Землю в 27,3:5,6, т.-е… почти ровно в 5 дней. И не только Луна, но и всякое вообще тело, находящееся от нас на расстоянии Луны, падало бы на Землю в течение 5 дней (если только ему не сообщена начальная скорость, а падает оно, подчиняясь лишь действию одного земного притяжения). Здесь мы вплотную подходим к задаче Жюля Верна. Легко понять, что столько же времени, 5 дней, должно лететь на Луну всякое тело, брошенное, наоборот, с Земли на Луну с такою скоростью, чтобы как-раз достичь расстояния Луны. Значит, алюминиевое ядро Жюля Верна должно было бы лететь 5 суток, если бы его хотели закинуть на расстояние Луны.

Однако, члены Пушечного Клуба рассчитывали закинуть ядро не прямо до Луны, а только до той точки между Землей и Луной, где сила притяжения обоих светил уравновешивается: отсюда ядро под действием своей тяжести само уже упало бы на Луну, притягиваемое ею. Это „нейтральная" точка находится на 0,9 расстояния от Земли.

Вычисление, следовательно, несколько усложняется. Во-первых, нужно вычислить, во сколько времени ядро долетело бы до 0,9 расстояния между Землей и Луной, или, — что то же самое, — во сколько времени тело с этого расстояния упало бы на Землю; во-вторых, надо определить продолжительность падения тела от этой нейтральной точки до Луны.

Для решения первой задачи представим себе, что на 0,9 расстояния от Земли до Луны обращается вокруг нашей планеты небесное тело, и вычислим период обращения этого воображаемого спутника Земли. Обозначив неизвестный период обращения через х, составляем, на основании третьего Кеплерова закона, пропорцию:

Межпланетные путешествия. Полёты в мировое пространство и достижение небесных тел i_042.png

отсюда искомый период обращения = 27,3√0,93= 23,3. Разделив этот период на √32, т.-е. на 5,6, мы, согласно выведенной ранее формуле, получим время перелета ядра от Земли до нейтральной точки: 23,3:5,6 = 4,1 суток.

Вторую задачу решаем сходным образом. Чтобы вычислить, во сколько времени ядро упало бы с расстояния нейтральной точки до Луны, нужно сначала определить, во сколько времени ядро, находясь на том же расстоянии от Луны, совершило бы вокруг нее полный оборот. Радиус орбиты этого воображаемого спутника Луны равен 0,1 радиуса лунной орбиты, а масса центрального светила (в данном случае Луны) — в 81 раз меньше массы Земли. Если бы масса Луны равнялась земной, то спутник, обращаясь на среднем расстоянии вдесятеро меньшем, чем лунное, совершал бы полный оборот в период y, легко вычисляемый по закону Кеплера:

Межпланетные путешествия. Полёты в мировое пространство и достижение небесных тел i_043.png

Но так как масса, а следовательно и притягательное действие центрального светила в данном случае в 81 раз меньше, чем в системе Земли, то время обращения ядра-спутника будет дольше. Во сколько раз? Из механики мы знаем, что центростремительное ускорение пропорционально квадрату скорости. Здесь это ускорение (производимое притяжением Луны) меньше в 81 раз, — следовательно, скорость движения ядра по орбите должна быть меньше в √81, т.-е. в 9 раз. Другими словами, ядро в роли лунного спутника должно обегать кругом Луны в 9 раз медленнее, чем оно обходило бы, на таком же расстоянии, вокруг Земли. Значит, искомое время обращения равняется: 0,273√10 × 9 = 7,77 суток.

Чтобы получить продолжительность падения ядра от нейтральной точки до Луны, нужно, как мы уже знаем, найденный сейчас период его обращения (7,77) разделить на √32, т.-е. на 5,6; получим 1,4 суток[35].

Итак, весь перелет пушечного снаряда от Земли до Луны должен был бы длиться 4,1+1,4 сут. = 5,5 сут.

Это, конечно, не вполне точный результат: здесь не принято во внимание то обстоятельство, что и при полете от Земли до нейтральной точки ядро подвергается притягательному действию Луны, ускоряющему его движение; с другой стороны, при падении от этой точки на Луну оно испытывает на себе замедляющее действие земного притяжения. Последнее действие должно быть особенно заметно и, как показывает более точное вычисление, почти вдвое увеличило бы продолжительность падения ядра от нейтральной точки до Луны. Благодаря этим поправкам, общая продолжительность перелета снаряда от Земли до Луны с 5½ суток возрастает до 6½ суток.

В романе продолжительность перелета определена „астрономами Кембриджской обсерватории" в 97 час. 13 мин. 20 сек., т.-е. в 4 с небольшим суток, вместо 5½ и даже 6½ суток. Жюль Верн ошибся на двое суток. По-видимому, французский романист, или лицо, производившее для него расчеты, преуменьшили время падения ядра от нейтральной точки до Луны: в романе оно определено всего в 13 час. 53 мин., между тем как, вследствие слабости лунного притяжения, это падение должно было совершаться гораздо медленнее и занять около 60 часов.

В заключение, рассмотрим случай взаимного падения друг на друга тел равной массы. Строго говоря, мы имеем взаимное падение во всех случаях: когда ядро падает на Луну, или камень на Землю, то и Луна одновременно падает на ядро, а Земля на камень. Но скорости перемещения огромных масс Луны и Земли в этих случаях так ничтожны, что ими пренебрегают: они меньше скорости падения ядра или камня во столько же раз, во сколько масса Луны или Земли больше массы или камня. Иное дело, когда массы тяготеющих друг к другу тел равны (или близки по величине): тогда скорости падающих друг на друга тел равны (или близки к равенству), и рассматривать процесс падения тел как процесс односторонний уже нельзя.

вернуться

35

На расстоянии Земли ядро обращалось бы вокруг Луны в 9 раз медленнее, чем Луна вокруг Земли, то-есть совершала бы полный оборот в 27,3 X 9 суток. Время падения его на Луну под действием ее притяжения равнялось бы, следовательно,

Межпланетные путешествия. Полёты в мировое пространство и достижение небесных тел i_059.png
= почти 44 дня. Столько времени должен был бы падать с Земли на Луну „кеворитный" снаряд Уэльса, если бы падение происходило без начальной скорости по прямой линии (точнее, немного меньше 44 суток, так как снаряд падает не от центра Земли к центру Луны, а от поверхности к поверхности).


Перейти на страницу:
Изменить размер шрифта: