Чтобы ничего не упустить из виду, Бор склеивает разлинованные листы со своими расчетами в длинный свиток, разворачивая его в разговорах с Резерфордом, словно ученый библейской древности. И постепенно из его числовых рядов и формул начинают проступать «кольца Сатурна»: на одном таком «кольце» могут вращаться до восьми электронов. При этом они не теряют энергию и, следовательно, не могут упасть на ядро. Так сохраняется стабильность атома. Но если химию атома определяют число и порядок электронов, то по числу электронов можно установить, имеешь ли дело с атомом гелия, золота или натрия. И поскольку атомы всех элементов электрически нейтральны, число положительно заряженных частиц в ядре в точности соответствует числу отрицательно заряженных электронов.
Удивительным образом из соображений Бора вытекает еще одно числовое соотношение, исполненное смысла. Ведь в химической периодической системе элементы расположены по атомному весу. Легкий водород стоит на первом месте, тогда как уран, как самый тяжелый элемент, на 92-м и — по состоянию науки на текущий 1913 год — последнем месте. Числа этого ранжирного весового списка называются порядковыми номерами элементов. И вот выясняется, что, например, атом магния с порядковым номером 12 имеет также 12 электронов, в железе — 26-м номере периодической системы — ядро окружают ровно двадцать шесть электронов, а ртуть с номером 80 также обладает ровно восемьюдесятью электронами. С этим полным соответствием порядкового номера элемента числу его электронов «атом-Сатурн» Резерфорда постепенно превращается в атомную модель Резерфорда — Бора, которая открывает новые взаимосвязи между физикой и химией элементов.
Электроны движутся не по всем геометрически возможным, а лишь по «разрешенным» орбитам с точно определенным радиусом вращения вокруг ядра, при этом они не отдают энергию. Только если электрон «спрыгивает» с одной такой прочной орбиты на соседнюю с более низким энергетическим уровнем, он излучает количество энергии, которое производит типичные для этого элемента спектральные линии — например, зеленую, синюю и желтую у бария. Занимаясь математикой этих линий, Бор наталкивается на матрицу решетки и делает при этом поразительное открытие: формулу легко можно преобразовать так, что в ней выявляется постоянная Планка h. Она работает и здесь, поскольку прыгающий электрон излучает энергию порциями, строго отделенными друг от друга: квантами Макса Планка. А это означает: атом Резерфорда — Бора подчиняется законам квантовой теории.
Когда немного погодя становятся известны первые совпадения экспериментальных данных с теорией Бора, не кто иной, как Альберт Эйнштейн, посвящает Бора в рыцари: «Это огромное достижение. Оно доказывает, что теория Бора верна». Другие физики далеко не в восторге. Со стороны геттингенских семинаров, например, Бор видит как смущенное молчание, так и нескрываемый ужас перед этой государственной изменой классической физике. В ноябре 1913 года некоторые заключения Бора и впрямь могли казаться еще слишком умозрительными и недостаточно обоснованными, однако сам он знает точно, что находится на верном пути. В Манчестере и Копенгагене в это время идет очень осторожная прорисовка плана строения самой природы. Промерены энергетические уровни, определены геометрические соотношения. Они противоречат старым теориям. Постоянная Планка, судя по всему, оказалась в сознании физиков-первопроходцев чем-то вроде Полярной звезды для успешной навигации сквозь еще неизведанные пространства атомной физики. Резерфорд целиком на стороне Бора, Эйнштейн в полном восторге, да и Планк вообще-то должен чувствовать себя польщенным, что его открытие тринадцатилетней давности, как оказалось, играет решающую роль на этом фундаментальном уровне природы.
Глава 3. Протон
Знаток Бетховена, прогуливаясь дивным июльским вечером 1914 года по Грюневальду — берлинскому кварталу вилл, — мог опознать волнующее andante cantabile из фортепьянного трио номер 7 си-бемоль мажор. Музыка льется из полуоткрытых окон виллы на Вангенхаймер-штрассе 21. Построенный в 1905 году дом основателен, но не помпезен и выдержан в холодных, строгих формах как снаружи, так и внутри. Стиль поведения хозяина дома также считается среди его коллег и сотрудников скорее сдержанным и официальным. Однако те, кто знает его поближе, ценят его как добросердечного, участливого друга и компанейского любителя музыки. Многие мечтают о приглашении на его домашние концерты. Отто Ган здесь постоянный гость. Возможно, уличному прохожему, который прислушивается к музыке, известно, что здесь живет со своей семьей тайный советник Макс Планк.
Вскоре после того, как отзвучала четвертая часть — allegro moderato presto, — распахиваются двери в сад, и стайка расшалившихся взрослых с громким смехом выбегает на лужайку. Все буйствуют без видимой причины, носясь вокруг декоративных кустов и фруктовых деревьев. Однако правила игры просты. Выбираешь себе жертву, честно предупреждаешь ее о своих намерениях и потом гоняешься за ней по всему саду, пока не поймаешь. Сегодня хозяин дома нацелился на изящную молодую женщину с аккуратным прямым пробором и пучком темных волос, которая проворно, но все же недостаточно, пускается в бегство, прыгая через клумбы и подныривая под низко висящие ветки вишни. Уже скоро стройный, рослый мужчина лет пятидесяти пяти, со светло-голубыми глазами и длинными ногами догоняет Лизу Мейтнер. «Как же он был доволен, когда ловил кого-нибудь», — вспоминает пойманная. Для Макса Планка и его гостей игра в догонялки после концерта, в котором сам он сегодня опять был за фортепьяно, а партию виолончели исполнял голландец, была излюбленным ритуалом.
В дверях веранды стоит скрипач, не очень веря в то, что разыгрывается у него на глазах, и колеблется, не ринуться ли и ему тоже в общую сутолоку. Этот человек воспринимает материю как затвердевшую энергию. В его сознании пространство и время связаны в нерасторжимое единство, в котором сила тяжести больше не действует, а формируется в некую геометрическую величину — в четырехмерное пространство-время, которое искривляется под влиянием массы. Эта концепция уже скоро сделает его самым знаменитым физиком XX века. Альберт Эйнштейн уже три месяца живет неподалеку от виллы Планка. Свой статус почетного директора Физического института кайзера Вильгельма без преподавательской нагрузки он принимает, как всегда, невозмутимо и с юмором. Он оповещает весь мир, что прибыл в Берлин «наподобие живой мумии». Его институт существует пока что лишь в воображении всех участников, которым удалась хитрость заманить сюда Эйнштейна. Он только что развелся со своей женой Милевой: «Жизнь без моей жены для меня лично — настоящее возрождение, — признаётся он другу. — У меня такое чувство, будто я оставил позади десяток лет каторги».
Лиза Мейтнер с живостью вспоминает тот домашний музыкальный вечер с трио си-бемоль мажор Бетховена на вилле Планка: «Эйнштейн, очевидно преисполненный радости от музыки, сказал, громко смеясь, в своей беззаботной манере, что ему стыдно за свою плохонькую технику. Планк стоял рядом, со спокойным, но буквально излучающим счастье лицом и потирал ладонью в области сердца: "Эта чудесная вторая часть". Когда потом я и Эйнштейн уходили, Эйнштейн ни с того ни с сего сказал: "Знаете, в чем я вам завидую?" И когда я ошеломленно взглянула на него, он добавил: "Что у вас такой начальник". С 1912 года ее должность личной ассистентки Планка в университете наконец-то оплачивается регулярным жалованьем. А в Химическом институте кайзера Вильгельма она и летом 1914 года по-прежнему работает с Отто Ганом как «неоплачиваемый специалист».
В марте 1914 года Ган приглашен на праздник Карлом Дуйсбергом, директором концерна «Байер-Верке» в Леверкузене. Он должен удивить гостей чем-нибудь впечатляющим из области исследования радиоактивности. Для этой цели он выбрал экзотический «карандаш»: стеклянную трубку с сильно излучающим и светящимся мезотором. Этим карандашом он пишет на фотопластинке имя директора. Пластинку тотчас проявляют, и публика получает возможность полюбоваться этой радиографией. Вечером, на превосходном торжественном банкете столы украшают доставленные из Голландии орхидеи, а вино в термосах охлаждается сжиженным воздухом.