В эту-то пору, на рубеже XIX и XX веков, физики обратили внимание на одно странное явление, замечательное только тем, что его невозможно было разумно объяснить: заряженный электроскоп с течением времени неизбежно сам разряжался! Нужно ли напоминать, что электроскоп — это два тонких металлических листочка на конце изолированной палочки; стоит подвести к листочкам электрический заряд — и их концы разойдутся, отталкиваясь друг от друга. А вереде, которая не проводит тока, разошедшиеся листочки не опадут: никто не будет снимать с них заряды, и сила отталкивания не станет убывать.

Заряженный электроскоп оставляли в герметически закупоренном сосуде, с нейтральными газами. Изоляция в электроскопе и герметичность сосуда были очень надежными. И тем не менее всякий раз обнаруживалось, что листочки понемногу опадают. Годилось единственное объяснение: в непроницаемом сосуде откуда-то появляются носители электричества — заряженные частички. Но откуда им взяться в нейтральном газе, да еще в сравнительно большом количестве?

Как обычно, все началось с простых вопросов.

6

Есть физические понятия, без расшифровки которых так же невозможно обойтись в рассказу об элементарных частицах, как, скажем, в разговоре об актерах без слова «сцена». Ионизация — одно из таких понятий. Это и впрямь та лабораторная сцена, на которой показываются из-за кулис и демонстрируют свои способности элементарные частицы. Не будь этого процесса — ионизации, ученые вряд ли хоть что-нибудь узнали бы об элементарных частицах.

Щелкающие счетчики в атомных институтах… Фотографии туманных следов в знаменитой камере Вильсона… Радиосигналы физических приборов на спутниках… Все это работает ионизация.

Наше минутное предположение, что процесса ионизации вдруг могло бы не быть, на редкость бессмысленно. Это все равно, что предположить на минуту, будто не существует самой окружающей нас природы, да и нас самих тоже. Мир без ионизации — это мир навсегда запечатанных атомов, между которыми почти невозможны взаимодействия, мир без подавляющего большинства химических превращений, без необходимого для живой жизни великого разнообразия сложных веществ. Бесплодный, невообразимый мир.

Очень давно уже было замечено, что нейтральные атомы легко превращаются в электрически заряженные ионы. Только физики не понимали, как это происходит. Фарадей, который в 30-х годах прошлого века ввел в науку это греческое слово «ион» — «странник», или «идущий», — не располагал никакими сведениями о строении атомов. А в их строении и было все дело. Они нейтральны, хотя и построены из заряженных частиц, потому что число минус-зарядов — электронов, вращающихся в атоме вокруг ядра, в точности равно числу плюс-зарядов — протонов в самом ядре.

Нужно только нарушить это равенство, чтобы атом тотчас превратился в заряженный ион. И на первый взгляд есть целых четыре способа сделать это: первые два — увеличить или уменьшить число протонов в ядре, другие два — уменьшить или увеличить число наружных электронов.

Но первые два способа не годятся. Совершенно не годятся! И не потому, что это очень трудная задача — выбить из ядра протоны или вогнать туда новые, а потому, что такая операция равносильна утрате самого атома, который нам хотелось бы превратить в ион.

Атомы разных химических элементов прежде всего тем и отличаются друг от друга, что в их ядрах заключены разные количества протонов. Есть три водорода: обыкновенный — протий, тяжелый — дейтерий, сверхтяжелый — тритий. Но все это — разновидности (изотопы) одного и того же химического элемента, потому что их ядра, содержащие только по одному протону, все имеют один и тот же заряд: + 1.

Изменить число протонов в ядре — это все равно, что превратить один элемент в другой!

А ионизация — процесс гораздо более скромный и гораздо более легкий: ионизированный водород остается водородом со всеми своими основными свойствами, гелий — гелием, а уран — ураном. Но если с атомными ядрами при ионизации не происходит решительно ничего, то, значит, что-то происходит с наружными электронами атомов?

Так остаются только два последних способа сделать атом заряженным: либо отодрать от его внешней оболочки один или несколько электронов, либо, напротив, присоединить еще новые. Другими словами: или хотя бы немного рассеять электронное облако, или сгустить.

7

Заметьте, какие глаголы приходится употреблять в разговоре об ионизации: «отодрать», «удалить», «присоединить», «сгустить»… Это все активные действия. При их совершении «происходит либо затрата энергии, либо ее выделение.

Если бы ионизация давалась даром, это было бы также безрадостно, как если бы она была невозможна.

В самом деле, это ведь означало бы, что все связи атомных электронов с ядрами ничего не стоят, что они попросту не существуют. Тогда мир предстал бы перед нами как скопление голых ядер или, напротив, ядер, окруженных густыми тучами электронов. Все зависело бы от чистого случая — от капризов механических столкновений частиц. Нечаянно возникали бы нелепейшие соединения элементов — возникали и тут же распадались бы. В конце концов мир превратился бы в однообразную мешанину ядер и электронов — в бесформенный электронно-ядерный газ. Тоскливое зрелище мира, в котором некому было бы тосковать…

А невозможность ионизации означала бы, что связи электронов с ядрами раз и навсегда нерушимы. Такая перспектива нисколько не отрадней. Атомы и вправду были бы тогда навечно запечатанными, крепко-накрепко засургученными, неизменяемыми. Они стали бы, наконец, оправдывать свое первородное прозвище — «неделимые». Но природе нечего было бы с ними делать. Мир превратился бы в почтовый ящик, набитый письмами, которые нельзя открыть и прочитать. Нелепый, недоступный даже воображению, гадательный мир…

Энергия ионизации не может быть нулевой — связи не существуют. И не может быть бесконечной — связи нерасторжимы. Все процессы в жизни природы конечны, кроме процесса самой этой жизни, не имеющей во времени и пространстве ни начала, ни конца.

Неизбежность затраты энергии на ионизацию атомов (кто, где и как расходует ее или получает, нам сейчас совершенно неважно) делает это событие в одних случаях возможным, а в других — нет. И так как всякий раз баланс энергии вполне определенен, ибо всякий раз вполне определенны связи, которые разрываются или воссоздаются, то в руках ученых оказывается надежный способ вести одну из бухгалтерских книг природы. Они записывают в ней, как сводятся концы с концами во множестве явлений микромира.

Так невидимые и неслышные события, к которым, казалось бы, и не подступиться с точными измерениями, вдруг становятся предметом строгого учета. А тогда неудивительно, что появляется возможность их «увидеть и услышать».

Здесь лежит исток нескончаемой серии открытий в мире элементарных частиц. Здесь исток и открытия настоящего природного заповедника этих частиц — космических лучей.

8

Листочки электроскопа сами опадали со временем. Кто-то стягивал с них заряды, или, как говорят ученые, нейтрализовал их. Это могли быть только заряженные ионы.

Значит, кто-то, пренебрегая непроницаемостью герметического сосуда, все-таки в него проникал и превращал нейтральные атомы газа в странников Фарадея.

Пронизывать стенки камеры с электроскопом способны были рентгеновские лучи и лучи радиоактивных элементов. Их энергии хватило бы и на проникновение внутрь камеры и на ионизацию газа.

Так, может быть, подумали физики, вблизи камеры действительно всякий раз ютятся какие-то неведомые источники этих лучей? Вместо того чтобы искать и устранять их, проще было окружить камеру толстыми свинцовыми экранами — достаточно толстыми, чтобы такие лучи поглотить.

Вообразите себе бегуна, пересекающего пустую площадь: его бегу никто не мешает. Так движутся лучи в вакууме: на их пути могут попасться лишь редкие прохожие — единичные частицы вещества. Но если площадь заполнена народом, бегун вынужден продираться сквозь толпу, расталкивая встречных и теряя на это силы. В конце концов он выдохнется и застрянет в толпе. Это случится тем раньше, чем гуще толпа. Так движутся лучи через вещество. Да при этом они бегуны с завязанными глазами: выбирать направление им не дано. Чем плотнее вещество, тем короче путь, на котором они успевают растратить всю свою энергию. Но этот путь все-таки тем длиннее, чем их первоначальная энергия больше.


Перейти на страницу:
Изменить размер шрифта: