Планета Земля расположена в Солнечной системе, на ней есть атмосфера, вода и жизнь.

Планета Марс расположена в Солнечной системе, на ней есть атмосфера и вода.

=> Вероятно, на Марсе есть жизнь.

Как видим, сопоставляются два объекта (планета Земля и планета Марс), которые сходны между собой в некоторых существенных, важных признаках (находиться в Солнечной системе, иметь атмосферу и воду). На основе данного сходства делается вывод о том, что, возможно, эти объекты сходны между собой и в других признаках: если на Земле есть жизнь, а Марс во многом похож на Землю, то не исключено наличие жизни и на Марсе. Выводы аналогии, как и выводы индукции, вероятностны.

Когда все суждения простые (Категорический силлогизм)

Все дедуктивные умозаключения называются силлогизмами (от греч. sillogismos – «подсчитывание, подытоживание, выведение следствия»). Существует несколько видов силлогизмов. Первый из них называется простым, или категорическим, потому что все входящие в него суждения (две посылки и вывод) являются простыми, или категорическими. Это уже известные нам суждения видов А, I, Е, О.

Рассмотрим пример простого силлогизма:

Все цветы (М) – это растения (Р).

Все розы (S) – это цветы (М).

=> Все розы (S) – это растения (Р).

Обе посылки и вывод являются в данном силлогизме простыми суждениями, причем и посылки, и вывод – это суждения вида А (общеутвердительные). Обратим внимание на вывод, представленный суждением Все розы – это растения. В этом выводе субъектом выступает термин розы, а предикатом – термин растения. Субъект вывода присутствует во второй посылке силлогизма, а предикат вывода – в первой. Так же в обеих посылках повторяется термин цветы, который, как нетрудно увидеть, является связующим: именно благодаря ему не связанные, разобщенные в посылках термины растения и розы можно связать в выводе. Таким образом, структура силлогизма включает в себя две посылки и один вывод, которые состоят из трех (различным образом расположенных) терминов.

Субъект вывода располагается во второй посылке силлогизма и называется меньшим термином силлогизма (вторая посылка также называется меньшей).

Предикат вывода располагается в первой посылке силлогизма и называется б́ольшим термином силлогизма (первая посылка также называется большей). Предикат вывода, как правило, является по объему большим понятием, чем субъект вывода (в приведенном примере понятия розы и растения находятся в отношении родовидового подчинения), в силу чего предикат вывода называется б́ольшим термином, а субъект вывода – меньшим.

Термин, который повторяется в двух посылках и связывает субъект с предикатом (меньший и больший термины), называется средним термином силлогизма и обозначается латинской буквой М (от лат. medium – «средний»).

Три термина силлогизма могут быть расположены в нем по-разному. Взаимное расположение терминов друг относительно друга называется фигурой простого силлогизма. Таких фигур четыре, т. е. все возможные варианты взаимного расположения терминов в силлогизме исчерпываются четырьмя комбинациями. Рассмотрим их.

Первая фигура силлогизма – это такое расположение его терминов, при котором первая посылка начинается со среднего термина, а вторая заканчивается средним термином. Например:

Все газы (М) – это химические элементы (Р).

Гелий (S) – это газ (М).

=> Гелий (S) – это химический элемент (Р).

Учитывая, что в первой посылке средний термин связан с предикатом, во второй посылке субъект связан со средним термином, а в выводе субъект связан с предикатом, составим схему расположения и связи терминов в приведенном примере (рис. 34).

Удивительная логика i_031.png

Прямые линии на схеме (за исключением той, которая отделяет посылки от вывода) показывают связь терминов в посылках и в выводе. Поскольку роль среднего термина заключается в том, чтобы связывать больший и меньший термины силлогизма, то на схеме средний термин в первой посылке соединяется линией со средним термином во второй посылке. Схема показывает, каким именно образом средний термин связывает между собой другие термины силлогизма в его первой фигуре. Кроме того, отношения между тремя терминами можно изобразить с помощью кругов Эйлера. В данном случае получится следующая схема (рис. 35).

Удивительная логика i_032.png

Вторая фигура силлогизма – это такое расположение его терминов, при котором и первая, и вторая посылки заканчиваются средним термином. Например:

Все рыбы (Р) дышат жабрами (М).

Все киты (S) не дышат жабрами (М).

=> Все киты (S) не рыбы (Р).

Схемы взаимного расположения терминов и отношений между ними во второй фигуре силлогизма выглядят так, как показано на рис. 36.

Удивительная логика i_033.png

Третья фигура силлогизма – это такое расположение его терминов, при котором и первая, и вторая посылки начинаются со среднего термина. Например:

Все тигры (М) – это млекопитающие (Р).

Все тигры (М) – это хищники (S).

=> Некоторые хищники (S) – это млекопитающие (Р).

Схемы взаимного расположения терминов и отношений между ними в третьей фигуре силлогизма изображены на рис. 37.

Удивительная логика i_034.png

Четвертая фигура силлогизма – это такое расположение его терминов, при котором первая посылка заканчивается средним термином, а вторая начинается с него. Например:

Все квадраты (Р) – это прямоугольники (М).

Все прямоугольники (М) – это не треугольники (S).

=> Все треугольники (S) – это не квадраты (Р).

Схемы взаимного расположения терминов и отношений между ними в четвертой фигуре силлогизма показаны на рис. 38.

Удивительная логика i_035.png

Отметим, что отношения между терминами силлогизма во всех фигурах могут быть и другими.

Любой простой силлогизм состоит из трех суждений (двух посылок и вывода). Каждое из них является простым и принадлежит к одному из четырех видов (А, I, Е, О). Набор простых суждений, входящих в силлогизм, называется модусом простого силлогизма. Например:

Все небесные тела движутся.

Все планеты – это небесные тела.

=> Все планеты движутся.

В этом силлогизме первая посылка является простым суждением вида А (общеутвердительным), вторая посылка – это тоже простое суждение вида А, и вывод в данном случае представляет собой простое суждение вида А. Поэтому рассмотренный силлогизм имеет модус AAA, или barbara. Последнее латинское слово ничего не обозначает и никак не переводится – это просто сочетание букв, подобранное таким образом, чтобы в нем присутствовали три буквы а, символизируя собой модус силлогизма AAA. Латинские «слова» для обозначения модусов простого силлогизма были придуманы еще в Средние века.


Перейти на страницу:
Изменить размер шрифта: