Как ей это удавалось?

252. Три сахарницы.В трех сахарницах лежит по одинаковому количеству кусков сахару, а чашки пусты. Если в каждую чашку положить

Пятьсот двадцать головоломок _71x.gif
содержимого каждой сахарницы, то в каждой сахарнице окажется на 12 кусков больше, чем в каждой чашке.

Пятьсот двадцать головоломок _81.png

Сколько кусков первоначально было в каждой сахарнице?

253. Садовая ограда.Садовая ограда, похожая на ту, что изображена на рисунке, имела в каждой секции (между двумя вертикальными стойками) одинаковое число колонок, а каждая вертикальная стойка (за исключением двух крайних) делила одну из колонок пополам. Рассеянно пересчитав из конца в конец все колонки и считая две половинки за одну колонку, мы обнаружили, что всего колонок было 1223.

Пятьсот двадцать головоломок _82_1.png

Мы заметили также, что число секций было на 5 больше удвоенного количества целых колонок в каждой секции. Сколько колонок было в каждой секции?

Геометрические задачи

254. Построение пятиугольника.«Я собираюсь сшить одеяло из кусочков материи, имеющих форму пятиугольника, — сказала одна леди. — Как мне лучше вырезать из картона правильный пятиугольник со стороной 10 см? Разумеется, я могу начертить окружность и затем с помощью циркуля отметить на ней 5 равноотстоящих точек. Но если мне не известен точный размер окружности, у моего пятиугольника стороны всегда будут получаться либо немного больше, либо немного меньше 10 см».

Пятьсот двадцать головоломок _82_2.png

Не могли бы вы подсказать леди простой и надежный способ, с помощью которого можно было бы построить нужный пятиугольник с первого раза?

255. С помощью одного циркуля.Можете ли вы построить 4 вершины квадрата с помощью лишь одного циркуля? У вас имеется только лист бумаги и циркуль. Прибегать к разного рода трюкам, вроде складывания бумаги, не разрешается.

256. Прямые и квадраты.Вот один простой вопрос. Чему равно наименьшее число прямых линий, с помощью которых можно построить ровно 100 квадратов? На помещенном здесь рисунке слева с помощью девяти прямых построено 20 квадратов (12 со стороной, равной АВ, 6 со стороной, равной АС, и 2 со стороной, равной AD). На том же рисунке справа прямых на одну больше, а число квадратов возросло до 17. Таким образом, важно не то, сколько всего прямых, а то, как они проведены. Помните, что требуется получить ровно 100 квадратов (не больше и не меньше).

Пятьсот двадцать головоломок _83.png

257. Сад мистера Гриндла.Однажды за чашкой чая мистер Гриндл сказал:

— Мой сосед был так щедр, что пожертвовал для моего сада столько своей земли, сколько я смог огородить с помощью четырех прямых заборов длиной 70, 80, 90 и 100 м соответственно.

— Какую же наибольшую площадь ты смог огородить? — спросил мистера Гриндла приятель.

Быть может, читатель сумеет правильно ответить на этот вопрос. Дело в том, что площадь треугольника с тремя известными сторонами определяется однозначно, но в случае четырехугольника все обстоит совершенно иначе. Так, вполне очевидно, что площадь четырехугольника Абольше площади четырехугольника В, хотя стороны в обоих случаях одинаковы.

Пятьсот двадцать головоломок _84_1.png

258. Садовая ограда.Вот одна старая часто встречающаяся головоломка. Многим она кажется трудной, но на самом деле решить ее проще, чем представляется на первый взгляд.

У одного человека был прямоугольный сад со сторонами 55 и 40 м, и ему захотелось проложить в нем по диагонали дорожку шириной в 1 м, как показано на рисунке.

Чему равна площадь дорожки?

Обычно приводятся такие размеры сада, при которых получается лишь приближенный ответ. Однако я специально подобрал размеры, чтобы ответ был точный. Для большей наглядности ширина дорожки на рисунке изображена без соблюдения масштаба.

Пятьсот двадцать головоломок _84_2.png

259. Садовая клумба.Вот очень простая маленькая головоломка.

У одного человека был треугольный газон, стороны которого пропорциональны сторонам треугольника, изображенного на рисунке. Человеку захотелось разбить на газоне предельно большую прямоугольную клумбу, на задев дерева.

Как ему следует поступить?

Эта головоломка поможет нам освоить простое правило, которое в некоторых случаях оказывается весьма полезным. Например, его с успехом можно приложить к задаче, в которой столяру требуется, не захватив сучка, вырезать из треугольной доски наибольшую прямоугольную крышку для стола.

Пятьсот двадцать головоломок _85_1.png

260. Землемерная задача.В каждом деле есть свои маленькие хитрости, а в науке о числах их бесконечное множество. Почти в каждой профессии имеются полезные приемы, позволяющие быстро находить нужные ответы и очень помогающие тем, кто с ними знаком. Приведем пример. Один человек купил небольшое поле, карта которого в масштабе 1 : 10000, попавшая мне в руки, изображена на рисунке. Я попросил своего знакомого землемера сказать мне, какова площадь поля, однако землемер ответил, что этого нельзя сделать без дополнительных измерений — знать длину лишь одной из сторон недостаточно. Каково же было его удивление, когда я через несколько минут сообщил, чему равна площадь поля, располагая длиной только одной его стороны, равной 70 м.

Пятьсот двадцать головоломок _85_2.png

Не могли бы вы сказать, как это можно сделать?

261. Изгородь.Вот задача, которая трудна в общем случае, однако в том виде, в каком я ее здесь привожу, решение ее не составит труда для искушенного человека.

Пятьсот двадцать головоломок _86_1.png

Некто имел квадратное поле 60 на 60 м и, кроме того, владел примыкавшей к шоссе землей (см. рисунок). По каким-то соображениям ему пришлось соединить изгородью три дерева, причем длина участка изгороди от среднего дерева до дерева на шоссе оказалась равной 91 м.

Чему равно (в целых метрах) точное расстояние от среднего дерева до калитки на шоссе?

262. Четыре шашки.Вот одна необычная головоломка, которая, я надеюсь, заинтересует моих читателей.

Пятьсот двадцать головоломок _86_2.png

Четыре шашки стоят на клетках какой-то шахматной доски (не обязательно 8x8) точно в том положении, как это изображено на рисунке. Клетки доски нарисованы симпатическими чернилами, поэтому они не видны.

Сколько квадратов содержит доска и как их восстановить? Известно, что каждая из шашек стоит в середине своего квадрата, что шашки расположены по одной на каждой стороне доски и что все углы доски свободны.

Эта головоломка действительно трудна до тех пор, пока вы не угадаете метод решения; после этого получить ответ будет невероятно легко.

263. Военная головоломка.Офицер приказал солдатам построиться в 12 шеренг по 11 человек в каждой таким образом, чтобы самому встать в точке, равноотстоящей от каждой шеренги.

— Но нас всего 120 человек, сэр, — сказал один из солдат.

Возможно ли было выполнить приказ офицера?

264. Спрятанная звезда.На приведенном здесь рисунке вы видите скатерть, сшитую из шелковых лоскутов. Ее сшила вся семья в подарок одному из своих членов ко дню его рождения. Один из даривших сшил свою часть в виде совершенно симметричной звезды, точно подошедшей к остальной части скатерти. Но от треугольных лоскутков так рябит в глазах, что обнаружить эту спрятанную звезду не так-то просто.

Пятьсот двадцать головоломок _87_1.png

Не могли бы вы найти звезду и, выдернув нужные нитки, отделить ее от остальной части скатерти?


Перейти на страницу:
Изменить размер шрифта: