Итак, треугольник EMD равнобедренный, или DM = ЕМ. Этим доказано, что СМ = DM или что ЕМ – медиана треугольника CED.
Из прямоугольного треугольника ABE находим
АЕ = АВ ? cos?ЕАВ = АВ ? cos?CAB = 4 ? cos ?.
Далее, из прямоугольного треугольника AED по теореме Пифагора получаем
и, наконец,
Ответ:
135. Окружности с центрами О и О1 касаются внутренним образом. Найдите угол В (рис. 193). (1)
Рис. 193.
136. Точка находится внутри круга радиуса 6 и делит проходящую через неё хорду на отрезки длиной 5 и 4. Найдите расстояние от точки до окружности. (2)
137. а) Докажите, что
(рис. 194);
Рис. 194.
б) докажите, что
(рис. 195). (3)
Рис. 195.
138. Диагональ BD четырёхугольника ABCD является диаметром окружности, описанной около этого четырёхугольника. Вычислить длину диагонали АС, если BD = 2, AB = 1, ?ABD:?DBC = 4:3. (3)
2.8. Задачи на пропорциональность отрезков хорд и секущих окружности
Напомним свойства хорд и секущих (рис. 196).
Рис. 196.
Для обоих случаев ОА ? ОВ = ОС ? OD.
В частности, если А совпадает с В (ОА – касательная), то ОА2= ОС ? OD.
139. Дано (рис. 197):
ОА = 4, АВ = 3, CD = 2. Найдите ОС. (1)
Рис. 197.
Решение. Пусть ОС = х, тогда ОА ? ОВ = ОС ? OD; 4 ? 7 = х(х + 2);
Ответ:
140. Стороны прямоугольника равны а и b. На стороне а, как на диаметре, построена окружность. На какие отрезки окружность делит диагональ прямоугольника (рис. 198)? (2)
Рис. 198.
Решение. Из точки С проведена секущая СА и касательная CD к окружности. По известному свойству имеем: СР ? СА = CD 2;
Ответ:
141. ОА – касательная; ОВ = 4; ВС = 3. Найдите длину ОА (рис. 199). (1)
Рис. 199.
2.9. Задачи на использование дополнительных построений, вспомогательных фигур и геометрических преобразований
Задачи с использованием геометрических преобразований, дополнительных построений и вспомогательных фигур достаточно редки в современных школьных учебниках, но именно в этих задачах, на наш взгляд, проявляется красота геометрии. Это не случайно, ведь благодаря проведенной «лишней» линии, осуществленному повороту, построению симметричной фигуры или вспомогательной окружности даже очень сложная задача может решиться «в одну строчку». За примерами далеко ходить не надо.
142. Найдите длину окружности, описанной около трапеции, стороны которой равны а, а, а и 2а (рис. 200). (1)
Рис. 200.
Решение. Легко видеть, что трапецию ABCD можно достроить до правильного шестиугольника (см. рис.), но у правильного шестиугольника радиус описанной окружности равен стороне шестиугольника: Rокр = а. Длина окружности l = 2?Rокр = 2?а.
Ответ: 2?а.
143. Основания трапеции равны 4 см и 9 см, а диагонали равны 5 см и 12 см. Найти площадь трапеции и угол между её диагоналями (рис. 201). (2)
Рис. 201.
Решение. Пусть ABCD – данная трапеция, CD = 4 см, АВ = 9 см, BD = 5 см и АС = 12 см. Чтобы известные элементы включить в один треугольник, перенесём диагональ BD на вектор DC в положение СВ'. Рассмотрим треугольник АСВ'. Так как ВВ'CD – параллелограмм, то В'С = 5 см, АВ' = АВ + ВВ' = АВ + CD = 13 см. Теперь известны все три стороны треугольника АВ'С. Так как АС2+ В'С2= (АВ')2= 52+ 122= 132, то треугольник АВ'С – прямоугольный, причем ?АСВ' = 90°. Отсюда непосредственно следует, что угол между диагоналями трапеции, равный углу АСВ', составляет 90°. Площадь трапеции, как и всякого четырёхугольника, равна половине произведения диагоналей на синус угла между ними. Отсюда площадь равна 1/2AC ? BD ? sin 90° = 1/2 ? 12 ? 5 ? 1 = 30 см2.
Ответ: 30 см2, 90°.
144. Основание АВ трапеции ABCD вдвое длиннее основания CD и вдвое длиннее боковой стороны AD. Длина диагонали АС равна а, а длина боковой стороны ВС равна b. Найти площадь трапеции (рис. 202). (3)
Рис. 202.
Решение. Пусть АВ = 2с, тогда CD = AD = с. Продолжим боковые стороны ВС и AD до пересечения их в точке Е. Получим треугольник ВАЕ. Так как CD = 1/2АВ, то CD – средняя линия треугольника ABE. Отсюда получаем, что СЕ = ВС = b и DE = AD = с. Получилось, что АВ = АЕ. Следовательно, треугольник ВАЕ равнобедренный и АС – его медиана. Но в равнобедренном треугольнике медиана, проведённая к основанию, является высотой, поэтому площадь треугольника ВАЕ можно вычислить так:
Далее, т. к. треугольники DCE и ABE подобны с коэффициентом подобия k = 1/2, то площадь треугольника DCE равна 1/4 площади треугольника ABE (отношение площадей подобных треугольников равно квадрату коэффициента подобия). Площадь трапеции, таким образом, равна 3/4 площади треугольника ABE, то есть равна 3/4аb
4 3 Ответ: 3/4аb.
145. Внутри равностороннего треугольника ABC дана точка М, такая, что АМ = 1, ВМ = ?3 и СМ = 2. Найти длину АВ (рис. 203). (3)
Рис. 203.
Решение. Повернём треугольник АСМ вокруг точки С на 60°. Тогда точка А перейдёт в точку В, точка М – в некоторую точку D, треугольник АСМ – в треугольник BCD. При этом CD = СМ и ?MCD = 60°, следовательно, треугольник CDM – равносторонний, а значит, и ?CDM = ?DMC = 60°. С помощью поворота получен вспомогательный треугольник BDM. Заметим, что BD = AM = 1, ВМ = ?3, DM = CM = 2. Значит, треугольник BDM прямоугольный (ведь BM2+ BD2= (?3)2+ 12= DM2), ?DBM = 90° и ?BMD = 30° (противолежащий катет BD равен половине гипотенузы MD). Далее вычислим угол ВМС. ?ВМС = ?BMD + ?DMC = 30° + 60° = 90°. Применив теорему Пифагора к треугольнику ВСМ, найдём, что
Ответ: ?7.