Так как
Ответ: 8Q/?.
Задача 64 (рис. 251)
Рис. 251.
Решение. Так как ?BAC/?CAD = 1/2, а ?ВАС + ?CAD = 90°, то ?ВАС = 60°, ?CAD = 30°. Из ?ACD CD = AD ? tg 30° = AD/?3. Тогда CD: AD = 1:?3.
Ответ: 1:?3.
Задача 65 (рис. 252)
Рис. 252.
Решение. Пусть AD = а, АВ = b. По условию SABCD = а ? b = 9?3.
Так как ?AOD = 120°, то ?BOA = 60°. Значит, ?АОВ – равносторонний и OB = b; BD = 2b. Из ?ABD а2+ b2= (2b)2; а = ?3b. ?3b ? b = 9?3; b = 3; а = 3?3.
Ответ: 3 см; 3?3 см.
Задача 66 (рис. 253)
Рис. 253.
Решение. Для определённости будем считать, что АВ < AD. Так как AB ? AD = 48 и АВ2+ AD2= BD2= 100, то AD = 8, АВ = 6. Поскольку OB = OD = 13 > BD, то точка О лежит вне круга с диаметром BD и потому вне прямоугольника. Пусть она находится по ту же сторону от диагонали BD, что и точка А. Тогда требуется найти ОС. Обозначим ?OBD через ? и ?DВС через ?. Чтобы найти угол ?, опустим из точки О на диагональ BD перпендикуляр ОК. Получим ВК = KD = 1/2BD. Из прямоугольного ?ОВК следует:
Тогда sin ? = 12/13. Из прямоугольного ?DBС находим:
Применяя к треугольнику OBС теорему косинусов, получаем
Ответ:
Задача 70 (рис. 254)
Рис. 254.
Решение. Как видно из рисунка, диаметр окружности d совпадает с диагональю квадрата АВ. По теореме Пифагора
Ответ: 7?2 см.
Задача 71 (рис. 255)
Рис. 255.
Решение. Пусть сторона малого квадрата а, тогда диаметр d = 2Rкруга круга равен диагонали малого квадрата, т. е.
Но Rкруга – это половина стороны большого квадрата. Сторона большего квадрата
Ответ: 2:1.
Задача 72 (рис. 256)
Рис. 256.
Решение. MNKLPTQS – правильный восьмиугольник (см. рис.). Пусть РТ = х, тогда
из равнобедренного треугольника LCP
Из равенства LP = РТ получаем:
Ответ:
Задача 73 (рис. 257)
Рис. 257.
Решение. Очевидно, что MNKL – квадрат. Его диагональ NL = NE + FL + EF = 2NE + EF = 2NE + 1 (см. рис.). Так как NE – высота в равностороннем треугольнике BNC, то
Сторона квадрата
Ответ: 2 + ?3.
Задача 76 (рис. 258)
Рис. 258.
Решение. Можно, конечно, пуститься в достаточно длинные арифметические вычисления, но мы покажем самое простое и красивое решение. Раз площадь большого треугольника равна площади шестиугольника, то площадь этого треугольника в 6 раз больше площади треугольника ОАВ. А поскольку площадь правильного треугольника пропорциональна квадрату стороны, то его сторона в ?6 раз больше стороны АВ, т. е. сторона его будет равна 14?6.
Ответ: 14?6.
Задача 77 (рис. 259)
Рис. 259.
Решение. Пусть сторона равностороннего треугольника АВ = a;
Найдём радиус r вписанной окружности
Здесь р = 3a/2 – полупериметр правильного треугольника ABC.
Ответ: 2:1.
Задача 78 (рис. 260)
Рис. 260.
Решение. Пусть ABCD – данный четырёхугольник. Обозначим К, L, М, N – точки касания окружности соответственно со сторонами АВ, ВС, CD, AD четырёхугольника ABCD. Соединим эти точки с центром О. Треугольники АОК, AON, CLO, СМО – равны, как имеющие равные гипотенузы и катеты: у них АО = ОС по условию и КО = OL = ОМ = ON = r, где r – радиус окружности, вписанной в четырёхугольник ABCD. Аналогично доказывается, что равны треугольники КОВ, BOL, DON и DOM. Из равенства треугольников имеем, что ?КОВ = ?BOL = ?NOD = ?DOM, а также ?АОК = ?LOC = ?AON = ?СОМ. Значит, ?AON + ?NOD = ?АОК + ?КОВ = ?BOL + ?LOC = ?СОМ + ?MOD. Так как ?АОВ = ?АОК + ?КОВ, ?ВОС = ?BOL + ?LOC, ?COD = ?СОМ + ?MOD, ?AOD = ?AON + ?NOD, то ?АОВ = ?ВОС = ?COD = ?AOD, и поскольку в сумме они составляют 360°, то каждый из них равен 90°. По теореме Пифагора из треугольника АОВ находим, что
Следовательно, периметр четырёхугольника (ромба) ABCD равен 4?5.
Ответ: 4?5.
Задача 85 (рис. 261)
Рис. 261.
Решение. Составим пропорции: ?10? длина дуги А1В1 = 1.
360° ? длина окружности 2?R1. Отсюда
Ответ:
Задача 86 (рис. 262)
Рис. 262.
Решение. Так как ОА = 2r, то из прямоугольного треугольника ОBА имеем: ?ВАО = 30° (гипотенуза ОА в 2 раза больше катета OB) и ?ВАС = 60°.
Ответ: 60°
Задача 87 (рис. 263)
Рис. 263.