110

Кто победит и сколько времени для этого потребуется?
Самые знаменитые головоломки мира pic_87.png

Жители Сиама – прирожденные игроки, готовые ставить на последние лохмотья. Сами они не очень-то воинственны, но весьма любят наблюдать схватки между самыми разными животными. Никого не удивят петушиные или собачьи бои, но ни в одной другой стране вы не встретите бои рыбьи!

Там есть два вида рыб, которые, несмотря на свои вкусовые достоинства, ценятся исключительно за бойцовые качества. Рыбы одного вида, называемые королевскими, крупны и имеют белую чешую, а рыбы другого вида, называемые дьявольскими или черными карпами, маленькие и черные. Между этими видами существует столь сильная антипатия, что, едва завидев друг друга, рыбы тут же бросаются в атаку и бьются насмерть.

Королевская рыба за считанные секунды способна уничтожить пару маленьких рыб, но дьявольские рыбы столь проворны и действуют столь слаженно, что три такие рыбки с успехом противостоят одной большой и битва между ними может продолжаться часами. Они так сообразительны и подвижны, что 4 маленькие рыбки убивают большую рыбу ровно за 3 мин, а 5 рыбок могут нанести coup de grace [13]за пропорционально более короткое время – 2 мин и 24 с (соответственно 6 рыбок – за 2 мин и т. д.).

Эти комбинации противостоящих сил столь точны и надежны, что можно вычислить точное время, за которое определенное число рыб одного вида уничтожит определенное число своих врагов.

На нашем рисунке показаны 4 королевские рыбы, противостоящие своим 13 маленьким противникам. Кто победит? И сколько времени понадобится одной стороне, чтобы уничтожить другую?

[Дабы избавиться от двусмысленности, содержащейся в условии С. Лойда, стоит подчеркнуть, что дьявольские рыбы всегда атакуют одну королевскую рыбу стайками не менее трех рыб и не отступают от нее до полного уничтожения. Так, мы не можем считать, что пока 12 маленьких рыб блокируют четырех больших, тринадцатая дьявольская рыба шныряет туда и обратно и «прикладывает руку» к гибели всех своих противниц. Исходя из того, что 4 дьявольские рыбы убивают одну королевскую за 3 мин, мы могли бы сказать, что 13 дьявольских рыб прикончат одну королевскую за 12/ 13мин, а четырех королевских рыб – за 48/ 13мин (3 мин 41 7/ 13с). Однако такие же рассуждения приводят и к заключению, что 12 дьявольских рыб убьют одну королевскую за 1 мин и четырех королевских рыб за 4 мин даже без помощи тринадцатой рыбы – вывод, который, очевидно, нарушает предположение Лойда о том, что 3 маленькие рыбы не способны убить одну большую. – М. Г.]

111

Сколько монет нужно уплатить за щенка?
Самые знаменитые головоломки мира pic_88.png

Китайцы стали чеканить монеты за тысячелетия до нашей эры, но так и не постигли основных принципов монетного дела. Так, в Поднебесной империи при крупных сделках оперировали золотыми слитками, на которых имелось клеймо с датой и именем банкира, однако в широком обращении находились таели – монеты переменного достоинства. Таели делались все тоньше и тоньше, пока стопка из 2000 монет не достигла в высоту меньше 3 дюймов. Аналогичным образом переменную толщину имела и обычная мелочь из медных монет с круглой, квадратной или треугольной дыркой в середине. Китайцы носили эти монеты нанизанными на ниточку, чтобы удобнее было при расчетах отмерить стопку нужной высоты. Стоимость стопки выражалась в битах.

Допустим, что 11 монет с круглой дыркой стоят 15 бит, 11 монет с квадратной дыркой – 16 бит, а 11 монет с треугольной дыркой – 17 бит. Скажите, сколько монет каждого вида потребуется для того, чтобы купить маленького упитанного щенка, стоящего 11 бит (собачье мясо весьма ценится в тех краях)?

112

Сколько кусков сыра получается после шести плоских разрезов?
Самые знаменитые головоломки мира pic_89.png

Поводом для хорошей головоломки может послужить все новое, что так или иначе привлечет ваше внимание, однако придется еще немало поработать, прежде чем эта головоломка примет окончательную форму. Иногда вас может озадачить что-то в повседневной жизни, тогда вы начинаете думать, а как увеличить трудность решения этой задачи, поглубже скрыв лежащий в ее основе принцип, то есть придав ей форму истинной головоломки.

Задача должна быть поставлена мягко, картинка может помочь объяснить условия, но вместе с тем реальные трудности должны маскироваться убаюкивающей простотой всей истории. Можно постараться отвлечь внимание от основного трюка, ибо, как сказал один великий философ еще за тысячелетия до открытия Америки, Ars est celare artem.Не иначе как для любителей головоломок он хотел подчеркнуть, что истинное искусство состоит в том, чтобы сделать его незаметным. Именно тут кроется основное различие между головоломками нового и старого времени.

Мне случилось как-то в военном лагере наблюдать, как один солдат делил круг сыра. Я поразился той изобретательности, с которой он это делал. Чем больше я об этом размышлял, тем больше убеждался, что напал на удачную идею, которая наконец выкристаллизовалась в форме головоломки. Я поздравил квартирмейстера с таким умелым солдатом, на что тот ответил:

– Ну, это что! Видели бы вы, как он режет пирог! Разрезая пирог, мы имеем дело только с поверхностью и не идем дальше квадратов или квадратных корней, как сказал бы математик. При делении же сыра мы спускаемся глубже поверхности, используя свойства глубины и привлекая кубические уравнения.

Самые знаменитые головоломки мира pic_90.png

Можете ли вы сказать, на сколько частей разделен круг сыра с помощью указанных здесь шести прямых разрезов?

113

Перепутанные шляпы

Весьма интересные головоломки могут возникнуть в любой момент, следуя перипетиям нашей бренной жизни. Вот что рассказывает старый и весьма респектабельный гардеробщик Джордж Вашингтон Джонсон.

В конце вечера на вешалке оставалось ровно 6 шляп, но пришедшие за ними джентльмены настолько захмелели, что ни один из них не мог ни достать свой номерок, ни даже просто узнать собственную шляпу. В совершенном отчаянии Джонсон вынужден был позволить каждому выбрать ту шляпу, какую он пожелает. С точки зрения любителя головоломок, было бы интересно определить вероятность того, что ни один из шестерых не возьмет свою собственную шляпу.

114

Как восемь ворон могут сесть на хлебное поле, чтобы никакие три из них не оказались на одной прямой?
Самые знаменитые головоломки мира pic_91.png

Известный орнитолог, описывая привычки и смекалку птиц, рассказывает, что он был свидетелем того, как стая ворон опустилась на хлебное поле и расположилась на нем в полном соответствии с правилами военной тактики. Каждая птица уселась таким образом, чтобы видеть каждого из своих товарищей, дабы по малейшему движению любого из них судить о приближающейся опасности.

Не пытаясь вдаваться в тайны вороньего беспроволочного телеграфа, заметим, что само расположение ворон на поле приводит к очень любопытной задаче. Пусть центры клеток шахматной доски 8 x 8 изображают 64 снопа пшеницы, показанные на рисунке. Головоломка состоит в том, чтобы посадить на эти точки 8 ворон, причем никакие две вороны не должны находиться в одном ряду или на одной диагонали. Кроме того, требуется, чтобы человек с ружьем, обходя поле, не мог попасть в трех из них, расположенных на одной прямой.

вернуться

13

Удар из милосердия (фр.)– удар, которым в средние века приканчивали побежденного на поединке. – Прим. перев.


Перейти на страницу:
Изменить размер шрифта: