На борту «машины фон Неймана» находятся манипуляторы разного рода, различные измерительные инструменты, маленькая плавильная печь и компьютер, управляющий работой аппарата. Производится спуск малогабаритного транспортного средства, щупы буравят грунт чужого мира, производится анализ газовых смесей, и, естественно, определяется, существуют ли уже формы жизни и если да, то какие. Постепенно «машина фон Неймана» начинает производить чугун и сталь, прессовать небольшие шестеренки и изготовлять электропровода. Все это продолжается сотни лет, но у «машины фон Неймана» в запасе много времени. Когда-нибудь, даже если на это уйдет 10 ООО лет, «машина фон Неймана» достроит сама себя и возместит потерянные при посадке детали. Теперь есть уже две «машины фон Неймана». Они стартуют из чужого мира, у каждого аппарата цель — другая звезда. За миллионы лет «машины фон Неймана» распространятся на участок Млечного Пути, который можно вычислить.

Все расходы, которые пришлось бы понести человечеству на распространение «машин фон Неймана», ограничились бы первым экземпляром.

О том, что создать «машину фон Неймана» нереально, знал и сам Иоганн фон Нейман. В 50-е годы затраты на такой аппарат даже невозможно было подсчитать. А сегодня?

За прошедшие десятилетия компьютерные технологии достигли такого прогресса, о котором во времена Иоганна фон Неймана никто не мог и мечтать. Уже в середине 80-х годов скорость вычислений любого хорошего ПК составляла несколько миллионов операций с плавающей запятой в секунду. Десятью годами позже появился миллиард операций в секунду, а вскоре были достигнуты и десять миллиардов. Сегодня в продаже компьютеры с быстродействием в 100 миллиардов операций в секунду, а в стадии разработки — компьютер с триллионом (= 1012) операций в секунду. И уже поговаривают о компьютерах с десятью триллионами операций. Наряду с быстродействием наблюдается и микроминиатюризация. Специалисты могут представить себе компьютер с триллионом операций в секунду размером со спичечную коробку.

Еще одна технология, мало известная публике, — так называемая «нанотехнология». Нанометр, миллионная доля одного миллиметра, настолько мал, что невидим. Тем не менее можно работать в таком микроскопическом диапазоне и соединять между собой крошечные элементы конструкции. Это называется нанотехнологией. Например, в Центре ядерных исследований в Карлсруэ разработана шестеренка из никеля, диаметр которой 130 микрометров (1 микрометр = 1000 нанометров). Приводимая в движение воздухом, микроскопическая шестеренка совершает 100 000 оборотов в минуту. Или еще пример: в вузах США, где готовят специалистов по нанотехнологиям, применяются микросита с настолько мелкими ячейками, что в них застревают бактерии. Технологии таких лилипутских механизмов предсказывают большое будущее. Ее используют в фильтрах для газов, в микроскопических роботах или в медицине. Скоро на базе нанотех-нологий появятся электростимуляторы сердца, искусственные поджелудочные железы или наноочистители, движущиеся в кровеносных сосудах и удаляющие известковые бляшки. Цель такой нанотехнологии — мельчайшие электронные и механические устройства, которые можно использовать везде.

С развитием микроминиатюризации в компьютерном деле и нанотехнологии вполне реальными становятся «машины фон Неймана», которые будут иметь размер теннисного мячика и полезный груз 100 г. Такие «теннисные мячики» уже сегодня можно катапультировать с Луны или с орбиты к ближайшим планетам, похожим на Землю. Они могли бы иметь скорость до 50 % от скорости света и передавать свою информацию нам на Землю. К тому же «теннисные мячики фон Неймана» самовоспроизводятся за пределами Земли намного быстрее, чем устарелые «машины фон Неймана». Разные группы специалистов по космической технике, не оповещая общественность, серьезно размышляют об этом. А расходы? Программа НАСА «Аполлон» поглотила около 100 миллиардов долларов. Ныне оборонный бюджет только в США составляет 500 миллиардов долларов в год. По сравнению с ним расходы на «миниатюрную машину фон Неймана» просто смехотворны, потому что все затраты относятся только к одному — первому — аппарату.

Если «машина фон Неймана» через 50 лет после достижения своей первой цели начнет производить копии, то в следующие 50 лет они смогут отправиться к новым объектам. Предположим, что аппараты-копии отправятся к тем звездным системам, которые находятся на расстоянии около десяти световых лет, это означает скорость распространения десять световых лет за 60 лет. Поскольку диаметр нашего Млечного Пути — около 100 000 световых лет, колонизация с помощью «машин фон Неймана» продлится примерно 600 000–700 000 лет. Или — в зависимости от скорости — в два или три раза дольше. Даже если распространение будет длиться десять миллионов лет, это всего лишь одна тысячная от возраста нашего Млечного Пути, ведь у него за плечами десять миллиардов лет.

Но зачем вообще запускать в космос механические конструкции, если можно поступить еще проще?

Как всякое живое существо, человек, в конечном счете, тоже «самовоспроизводящийся аппарат». Этот «аппарат» можно уменьшить до размеров клетки. Каждая клетка содержит полную ДНК, которая необходима для построения всего тела. И зачем отправлять в космос сложные технологии, если микроскопическая ДНК обеспечит то же самое? Человеческую ДНК можно распространить во Вселенной как медленно, так и быстро. В более медленном варианте мельчайшие контейнеры размером едва ли больше булавки катапультируют в сторону представляющей интерес планеты или инфицируют ими определенный участок Млечного Пути — примерно так, как крестьянин разбрасывает по полю семена. Если семя попадет на непригодную почву — на песок, лед, скалу или даже в воду, — оно никогда не взойдет. Если же упадет в подходящую почву — будет развиваться. Вся же информация содержится в ДНК посевного зерна.

ДНК можно прицельно передавать по лазерному лучу и точно направлять на подходящие планеты, похожие на Землю. На них будет происходить эволюция со всеми ее обязательными формами, как это нам известно по Земле. А поскольку продуктом в конечном счете будет разумный человек, то он будет любопытен. Любопытство заставит его раньше или позже задать вопрос: как мы появились? Одиноки ли мы во Вселенной? Как нам установить контакт? Как расселиться на другие планеты? Он неизбежно натолкнется на мысль о «машине фон Неймана» и, безусловно, отбросит эту идею. Потом он наконец обнаружит свою ДНК, и его посетит озарение.

Наших ученых, постоянно рассуждающих о том, что расстояния во Вселенной непреодолимы, световые годы служат естественным пределом, а внеземные формы жизни никогда не бывают похожи на людей, такое озарение еще явно не посетило. Их эгоцентризм не позволяет увидеть очевидное. В космосе полно жизни, и на планетах, похожих на Землю, обитают существа, похожие на людей. Вот так, тихо и мирно, потому что все они — ответвления одного биологического правила, о котором (пока) рассуждать не приходится.

Такие мысли не новы, но, видимо, они не интересуют астронома или журналиста, пишущего про науку. Еще в конце XIX века шведский химик и нобелевский лауреат Сванте Август Аррениус (1859–1927) сформулировал постулат, что жизнь вечна и потому вопрос о ее происхождении не ставится. Конечно, у круга тоже где-то есть начало, считал Аррениус, но как только окружность замкнулась, данный вопрос теряет актуальность; он становится несущественным, потому что ответить на него нельзя. По мысли Аррениуса, в начало круга следует со всем почтением поставить Творца или именно то, что обычно называют Богом. Я могу лишь скромно присоединиться к его мнению.

Тот же исследователь, Аррениус, — автор «теории панспермии». Согласно этой теории, зародыши жизни распространяются в космосе везде — настолько же самопроизвольно и естественно, как по всей Земле разлетается пыль. Профессор сэр Фред Хойл и индийский профессор, гений математики Н. Ч. Викрамасингх проверили теорию панспермии и блестяще доказали, как зародыши жизни разлетаются с помощью метеоритов по всей Вселенной. Любой астрофизик знает, что какие-то осколки планет или кометы во Вселенной непрерывно падают на какие-то планеты. Что это дает? Новые осколки планет. Вследствие падения на Землю метеорита земные горные породы выбрасываются в космос — просто потому, что сила удара при столкновении настолько большая, что небольшие осколки преодолевают пределы земного притяжения. А что содержат в себе такие скальные осколки? Естественно, тоже зародыши жизни! Распространение межзвездных зародышей жизни началось десятки миллиардов лет тому назад, и те, кто не понимает этого, видимо, туповаты.


Перейти на страницу:
Изменить размер шрифта: