С самого зарождения математической науки как самостоятельной отрасли знания (у колыбели которой стояли древние греки) и на протяжении более чем двух тысячелетий математики занимались поиском истины и добились на этом пути выдающихся успехов. Необозримое множество теорем о числах и фигурах, казалось, служило неисчерпаемым источником абсолютного знания, которое никогда и никем не может быть поколеблено.
За пределами самой математики математические понятия и выводы явились фундаментом замечательных научных теорий. И хотя новые факты устанавливались в результате сотрудничества математики и естествознания, опирающегося на данные, имеющие нематематический, скажем физический, характер, они казались столь же непреложными, как и принципы самой математики, потому что предсказания, которые делались на основе математических теорий в астрономии, механике, оптике и гидродинамике, необычайно точно совпадали с данными наблюдений и экспериментов. Математика давала ключ к глубокому постижению явлений природы, к пониманию, заменявшему тайну и хаос законом и порядком. Человек получил возможность с гордостью взирать на окружающий мир и заявлять, что ему удалось раскрыть многие тайны природы, по существу оказавшиеся серией математических законов. Убеждением в том, что истины открывают математики, проникнуто известное высказывание Лагранжа: «Ньютон был счастливейшим из смертных, ибо существует только одна Вселенная и Ньютон открыл ее законы».
Для получения своих удивительных, мощных результатов математика использовала особый метод — метод дедуктивных выводов из небольшого числа самоочевидных принципов, называемых аксиомами; этот метод знаком каждому школьнику — прежде всего из курса геометрии. Природа дедуктивного вывода такова, что она гарантирует истинность заключения, если только истинны исходные аксиомы. Очевидная, безотказная и безупречная логика дедуктивного вывода позволила математикам извлечь из аксиом многочисленные неоспоримые и неопровержимые заключения. Эту особенность математики многие отмечают и поныне. Всякий раз, когда нужно привести пример надежных и точных умозаключений, ссылаются на математику.
Успехи, достигнутые математикой с помощью дедуктивного метода, привлекли к ней внимание величайших мыслителей. Математика наглядно продемонстрировала возможности и силу человеческого разума. Почему бы не воспользоваться, спросили мыслители, столь хорошо зарекомендовавшим себя дедуктивным методом для постижения истин там, где прежде безраздельно властвовали авторитет, традиция и привычка, — в философии, теологии, этике, эстетике и в социальных науках? Человеческий разум, столь эффективный в математике и в математической физике, мог бы стать арбитром помыслов и действий также и в других областях, приобщив их к красоте истины и истинности красоты. В эпоху, получившую название эпохи Просвещения (или Века разума), методология математики и даже некоторые математические понятия и теоремы были применены к другим областям человеческой деятельности.
Обращение к прошлому — плодотворный источник познания настоящего. Созданные в начале XIX в. необычные геометрии и столь же необычные алгебры вынудили математиков исподволь — и крайне неохотно — осознать, что и сама математика, и математические законы в других науках не есть абсолютные истины. Например, математики с досадой и огорчением обнаружили, что несколько различных геометрий одинаково хорошо согласуются с наблюдательными данными о структуре пространства. Но эти геометрии противоречили одна другой — следовательно, все они не могли быть одновременно истинными. Отсюда напрашивался вывод, что природа построена не на чисто математической основе, а если такая первооснова и существует, то созданная человеком математика не обязательно соответствует ей. Ключ к реальности был утерян. Осознание этой потери было первым из бедствий, обрушившихся на математику.
В связи с появлением уже упоминавшихся новых геометрий и алгебр математикам пришлось пережить шок и другого рода. Математики настолько уверовали в бесспорность своих результатов, что в погоне за иллюзорными истинами стали поступаться строгостью рассуждений. Но когда математика перестала быть сводом незыблемых истин, это поколебало уверенность математиков в безукоризненности их теорий. Тогда им пришлось взяться за пересмотр своих достижений, и тут они, к своему ужасу, обнаружили, что логика в математике совсем не так уж тверда, как думали их предшественники.
По существу развитие математики имело алогичный характер. Это алогичное развитие включало в себя не только неверные доказательства, но и пропуски в доказательствах и случайные ошибки, которых можно было бы избежать, если бы математики действовали более осмотрительно. Такие досадные изъяны отнюдь не были редки. Но алогичность развития математики заключалась также в неадекватном толковании понятий, в несоблюдении всех необходимых правил логики, в неполноте и недостаточной строгости доказательств. Иными словами, чисто логические соображения подменялись интуитивными аргументами, заимствованными из физики, апелляциями к наглядности и ссылками на чертежи.
Но и когда все это было установлено, математика по-прежнему оставалась эффективным средством описания природы. Кроме того, математика сохранила привлекательность и сама по себе как область чистого знания, и в умах многих, особенно пифагорейцев, являлась частью реальности, представляющей самостоятельный интерес. {6}Учитывая это, математики решили восполнить пробелы в логическом каркасе своей науки и перестроить заново те части ее, в которых обнаружились изъяны. Движение за математическую строгость приобрело широкий размах во второй половине XIX в.
К началу XX в. математики стали склоняться к мнению, что желанная цель наконец достигнута. И хотя им пришлось признать, что математика дает лишь приближенное описание природы и многие утратили веру в то, что природа полностью основана на математических принципах, математики по-прежнему продолжали возлагать большие надежды на проводимую ими реконструкцию логической структуры математики. Но не успели смолкнуть восторги по поводу якобы достигнутых успехов, как в реконструированной математике в свою очередь обнаружились противоречия. Обычно эти противоречия принято называть парадоксами — эвфемизм, позволяющий тем, кто его использует, обходить молчанием кардинальное обстоятельство: там, где есть противоречия, там нет логики.
Ведущие математики и философы начала XX в. сразу же попытались разрешить возникшие противоречия. В результате возникло четыре различных подхода к математике, которые были отчетливо сформулированы и получили значительное развитие; у каждого из этих подходов нашлось немало приверженцев. Все четыре направления математики стремились не только разрешить известные противоречия, но и гарантировать, что в будущем не появятся новые противоречия, т.е. старались доказать непротиворечивость математики. Интенсивная разработка оснований математики привела и к другим результатам. Приемлемость некоторых аксиом и принципов логики дедуктивного вывода также стала яблоком раздора: позиции школ по этим вопросам разошлись.
В конце 30-х годов XX в. математик мог бы принять один из нескольких вариантов оснований математики и заявить что проводимые им математические доказательства по крайней мере согласуются с догматами избранной им школы. Но тут последовал удар ужасающей силы: вышла в свет работа Курта Гёделя, в которой он среди прочих важных и значительных результатов доказал, что логические принципы, принятые различными школами в основаниях математики, не позволяют доказать ее непротиворечивость. Как показал Гёдель, непротиворечивость математики невозможно доказать, не затрагивая самих логических принципов, замкнутость которых весьма сомнительна. Теорема Гёделя вызвала смятение в рядах математиков. Последующее развитие событий привело к новым осложнениям. Оказалось, например, что даже аксиоматически-дедуктивный метод, столь высоко ценимый в прошлом как надежный путь к точному знанию, небезупречен. В результате этих открытий число различных подходов к математике приумножилось и математики разбились на еще большее число группировок.
6
Относящийся к нашему времени выразительный пример подобного отношения к математике приводит в своей статье «Эйнштейн и физика второй половины XX века» [60] выдающийся современный физик, лауреат Нобелевской премии Ч. Янг (Ян Чжэиьнин). Он рассказывает, как, придя к своему старому учителю Чжень Шеншеню, ныне профессору Калифорнийского университета в Беркли и одному из крупнейших современных геометров, он выразил удивление тем, как быстро понадобились физикам идущие в значительной степени от Чженя так называемые связности на расслоениях,придуманные математиками вне всякой связи с физической реальностью. На это Чжень ответил ему: «Но ведь никак нельзя сказать, что это мы, математики, выдумали связности на расслоениях — ясно, что они существовали и до нас».