Внутреннее подобие представляет собой симметрию, проходящую сквозь масштабы, повторение большого в малом. Таблицы Мандельбро, отражавшие изменения во времени цен и уровня рек, обнаруживали подобие, поскольку не только воспроизводили одну и ту же деталь во все более малых масштабах, но и генерировали ее с определенными постоянными измерениями. Чудовищные формы вроде кривой Коха являлись внутренне подобными потому, что выглядели все теми же даже при большом увеличении. Подобие «встроено» в саму технику создания кривых: одно и то же преобразование повторяется при уменьшающемся масштабе. Подобие легко распознается, ведь его образы витают всюду: в бесконечно глубоком отражении фигуры человека, стоящего между двумя зеркалами, или в мультфильме о том, как рыбина заглотила рыбу, которая слопала рыбку, съевшую совсем маленькую рыбешку. Мандельбро любил цитировать Джонатана Свифта: «Итак, натуралисты наблюдают, как на блоху охотятся маленькие блошки, а их, в свою очередь, кусают еще более мелкие блошки, и так далее до бесконечности».

На северо-западе США землетрясения лучше всего изучать в геофизической лаборатории Ламонт-Догерти, которая размещена в нескольких ничем не примечательных зданиях, затерянных среди лесов на юге штата Нью-Йорк, к западу от реки Гудзон. Именно там Кристофер Шольц, профессор Колумбийского университета, специализировавшийся на изучении формы и строения твердого вещества Земли, впервые задумался о таком явлении, как фракталы.

Математики и физики-теоретики с пренебрежением отнеслись к трудам Мандельбро. Шольц, однако, принадлежал как раз к тому типу прагматиков, ученых практического склада, которые приветствовали появление фрактальной геометрии. Имя Мандельбро он впервые услышал в 60-х годах, когда первооткрыватель фракталов еще занимался экономикой, а сам Шольц заканчивал обучение в Массачусетском технологическом институте и ломал голову над проблемой землетрясений. Еще за два десятка лет до того было выявлено, что распределение землетрясений большой и малой силы подчиняется особой математической модели, подобной той, что отражает распределение доходов в экономике свободного рынка. Это наблюдение одинаково подходило для любого района земного шара, где бы ни подсчитывали число толчков и ни измеряли их силу. Принимая во внимание, сколь беспорядочны, непредсказуемы были сотрясения земной коры во всех других отношениях, имело смысл доискаться, какие именно физические процессы обуславливают подобную регулярность. По крайней мере, так думал Шольц. Многие другие сейсмологи довольствовались констатацией факта землетрясений.

Шольц не забыл имени Мандельбро, и когда в 1978 г. на глаза ему попалась богато иллюстрированная и напичканная уравнениями книга «Фракталы: форма, случайность и размерность», он купил этот труд — собрание весьма причудливых мыслей. Казалось, Мандельбро свалил туда в беспорядке все свои знания и гипотезы о Вселенной. За несколько лет эта работа и ее второе, расширенное и дополненное издание «Фрактальная геометрия природы» разошлись тиражом, какого не имела ни одна другая работа по высшей математике. Стиль изложения был темен и рождал досаду, хотя местами остроумие разбавляло сухую непроницаемость авторской манеры. Мандельбро называл свои писания «манифестом и настольной книгой».

Один из немногих упрямцев, среди которых большинство составляли естественники, Шольц несколько лет размышлял над тем, какую пользу можно извлечь из книги. По выражению Шольца, «Фракталы» были «не практическим руководством, а книгой восторгов». Он, впрочем, интересовался поверхностями, а о них рассказывалось буквально на каждой странице. Так и не сумев выкинуть из головы открытия Мандельбро, Шольц попытался применить фракталы к описанию, классификации и измерению геофизических объектов.

Вскоре Шольц понял, что не одинок, хотя до созыва многолюдных конференций и семинаров было еще далеко. Идеи фрактальной геометрии объединили ученых, озадаченных собственными наблюдениями и не знавшими, как их интерпретировать. Откровения фрактальной геометрии указали путь специалистам, исследовавшим слияние и распад всевозможных объектов. Ее методы как нельзя лучше подходили для изучения материалов: шероховатых поверхностей металлов, крошечных отверстий и канавок в ноздреватом старом камне, фрагментированных пейзажей зоны землетрясения.

Как представлял себе Шольц, в компетенцию геофизиков входило описание поверхности Земли — поверхности, чье соприкосновение с океанами формирует береговую линию. Твердая земная кора включает в себя зоны разрывов и расселин. Сдвигов, изломов и трещин на каменном лике Земли такое количество, что именно они дают ключ к тайнам планеты. Для постижения этих тайн они значат больше, чем слагающие земную кору горные породы. Расселины пересекают поверхностный слой нашей планеты в трех измерениях, образуя то, что Шольц назвал «распадающейся оболочкой». Эта оболочка регулирует циркуляцию в земной коре воды, нефти, природного газа. Она влияет на землетрясения. Постижение свойств поверхностей представляло собой задачу первостепенной важности, но Шольц полагал, что его наука зашла в тупик. Откровенно говоря, не от чего было даже оттолкнуться.

Геофизики рассматривали поверхности как рельефы — чередование выпуклостей, впадин и плоских участков. Взглянув, например, на силуэт автомашины «фольксваген»-жук, мы описали бы форму ее поверхности кривой. Эту кривую можно измерить традиционными методами Евклидовой геометрии, ее можно описать уравнением. Однако Шольц был убежден, что при таком подходе мы словно бы рассматривали поверхность в узком спектральном диапазоне, доступном нашему зрению. Это все равно что обозревать Вселенную сквозь красный фильтр — проглядывают только фрагменты, видимые при данной длине волны. Мы пропустим то, что воспринимается в других цветах, при иных длинах волн, не говоря уж о прочих частях спектра, например инфракрасном излучении или радиоволнах. В этом примере спектр соответствует масштабу. Рассматривать поверхность автомашины, используя Евклидову геометрию, значит воспринимать ее лишь с позиции наблюдателя, находящегося в десятке или сотне метров от объекта. А что он увидит на расстоянии одного или ста километров? Одного миллиметра? Одного микрона?

Представьте себе, что наблюдаете поверхность земного шара из открытого космоса, с расстояния в сто километров. Линия поверхности то опадает, то вздымается, огибая деревья, бугорки, здания и — где-нибудь на автостоянке — «фольксваген». В таком масштабе автомобиль — лишь одна из многочисленных выпуклостей, неупорядоченный фрагмент. Или вообразите, что мы придвигаемся к машине все ближе и ближе, рассматриваем ее в лупу или даже в микроскоп. Сначала, по мере того как округлость бамперов и капота пропадает из поля зрения, очертания становятся более плавными. Затем проявляются бугорки на поверхности стального корпуса. Расположение их произвольно, оно кажется хаотическим.

Шольц выяснил, что фрактальная геометрия снабдила науку эффективным методом описания специфичного бугристого ландшафта Земли. Металлурги обнаружили то же самое по отношению к поверхностям различных типов стали. В частности, фрактальное измерение поверхности металла зачастую позволяет судить о его прочности. Фрактальное измерение ландшафтов планеты открывает двери к постижению ее важнейших характеристик. Шольц размышлял о классической геологической формации — об осыпи на склоне горы. С большого расстояния она кажется одной из двухмерных Евклидовых форм, тем не менее геолог, приближаясь, обнаруживает, что двигается не столько по поверхности такой формы, сколько внутри нее. Осыпь распадается на валуны размером с легковую машину. Ее действительная размерность составляет уже около 2,7, поскольку каменистые поверхности, загибаясь и сворачиваясь, занимают почти трехмерное пространство, подобно поверхности губки.

Фрактальные изображения незамедлительно нашли применение в целом ряде областей, связанных со свойствами контактирующих поверхностей. Например, соприкосновение автомобильных покрышек и бетона — достаточно сложный предмет для исследования, как и соединение узлов или электрических контактов в механизмах. Свойства соединенных поверхностей совершенно отличны от свойств соприкасающихся поверхностей. Различие их обуславливается характером фрактального наложения составляющих поверхности бугорков. Один из простых, но весьма важных постулатов фрактальной геометрии состоит в том, что контактирующие поверхности соприкасаются далеко не везде, — соприкосновению препятствует их бугристость, прослеживаемая в любом масштабе. Даже в скале, подвергшейся огромному давлению, при достаточно большом увеличении можно заметить крошечные промежутки, сквозь которые просачивается жидкость (Шольц назвал это «эффектом Шалтая-Болтая»). Именно поэтому никогда не удается соединить осколки разбитой чашки. Даже если они, на первый взгляд, совпадают, при большем увеличении становится видно, что беспорядочно расположенные бугорки просто не сходятся.


Перейти на страницу:
Изменить размер шрифта: