Следовательно, мутация определенно является изменением в наследственном багаже и должна обусловливаться каким-то изменением наследственной субстанции. В самом деле, большинство важных экспериментов, открывших нам механизм наследственности, состояло в тщательном анализе потомства, полученного путем скрещивания мутировавших (а во многих случаях даже множественно мутировавших) индивидуумов с немутировавшими или с иначе мутировавшими. С другой стороны, в силу их свойства действительно передаваться потомкам, мутации служат также подходящим материалом и для естественного отбора, который может работать над ними и производить виды, как это описано Дарвином, элиминируя неприспособленных и сохраняя наиболее приспособленных.
В дарвиновской теории нужно только заменить его "небольшие случайные вариации" мутациями (совсем как в квантовой теории "квантовый скачок" заменяет собой "непрерывные переходы энергии"). Во всех других отношениях в теории Дарвина оказались необходимыми лишь очень небольшие изменения, во всяком случае если я правильно понимаю точку зрения, которой придерживается большинство биологов [22].
Локализация. Рецессивность и доминантность
Теперь мы должны рассмотреть некоторые другие важнейшие факты и представления, касающиеся мутаций, - опять в несколько догматической форме, не показывая, как эти факты и представления возникли один за другим из экспериментальных данных.
Мы должны были бы ожидать, что определенная мутация вызывается изменением в определенной области одной из хромосом. И так это и есть. Важно констатировать: мы твердо знаем, что это изменение происходит только в одной хромосоме и не возникает одновременно в соответствующем "локусе" гомологичной хромосомы. Схематически это показано на рис. 8, где крестом отмечен мутировавший локус.
Рис.8. Гетерозиготный мутант. Крестом отмечен мутировавший ген
Факт, что затронута только одна хромосома, обнаруживается, когда мутировавшая особь (часто называемая "мутант") скрещивается с немутировавшей. Ибо при этом ровно половина потомства обнаруживает мутантный признак, а половина - нормальный. Это и есть именно то, чего следует ожидать в результате расхождения у мутанта двух хромосом в мейозе и что показано весьма схематично на рис. 9.
Рис. 9. Наследование мутации. Прямые линии указывают передачу нормальной хромосомы, а двойные - передачу мутировавшей хромосомы. Хромосомы третьего поколения, происхождение которых не указано, приходят невключенными в схему супругов особей второго поколения. Предполагается, что эти супруги не родственны и свободны от мутаций
На этом рисунке дана родословная, где каждый индивидуум (трех последовательных поколений) представлен просто парой хромосом. Пожалуйста, учтите, что если бы обе хромосомы мутанта были изменены, то все дети имели бы одну и ту же (смешанную) наследственность, отличную от наследственности каждого родителя.
Но экспериментировать в этой области не так просто, как могло показаться из вышесказанного. Дело усложняется вторым важным обстоятельством, а именно тем, что мутации весьма часто бывают скрытыми. Что это значит?
У мутантной особи две "копии шифровального кода" больше уже не одинаковы; они представляют два различных "толкования" или две "версии", во всяком случае в том месте, где произошла мутация. Может быть, полезно указать сразу, что хотя это и соблазнительно, но было бы совершенно неверно рассматривать первоначальную версию как "ортодоксальную", а мутантную версию как "еретическую". Мы должны рассматривать их в принципе как равноправные, ибо и нормальные признаки в свое время также возникли путем мутаций.
Действительно, признаки мутантного индивидуума, как общее правило, соответствуют или той или другой версии, причем эта версия может быть как нормальной, так и мутантной. Версия, которой следует особь, называется доминантной, противоположная-рецессивной; другими словами, мутация называется доминантной или рецессивной в зависимости от того, проявляет ли она свой эффект сразу или нет.
Рис.10. Гомозиготный мутант, полученный в одной четверти потомства при оплодотворении гетерозиготных мутантов (см. рис.8) или при скрещивании их между собой
Рецессивные мутации даже более часты, чем доминантные, и бывают весьма важными, хотя они не сразу обнаруживаются. Чтобы л изменить свойства организма, они должны присутствовать в обеих хромосомах (рис. 10). Такие индивидуумы могут быть получены, когда два одинаковых рецессивных мутанта скрещиваются между собой или когда мутант скрещивается сам с собой. Последнее возможно у гермафродитных растений и происходит даже самопроизвольно. Простое рассуждение показывает, что в этих случаях около четверти потомства будет мутантной внешности.
Введение некоторых технических терминов
Для большей ясности здесь следует объяснить некоторые технические термины. То, что я называю "версией шифровального кода" - будь она первоначальной или мутантной, - принято обозначать термином "аллель". Когда версии различны, как это показано на рис. 8, особь называется гетерозиготной в отношении этого локуса. Когда они одинаковы, как, например, в немутировавших особях или в случае, изображенном на рис. 10, они называются гомозиготными. Таким образом, рецессивные аллели влияют на признаки только в гомозиготном состоянии, тогда как доминантные аллели производят один и тот же признак как в гомозиготном, так и в гетерозиготном состоянии.
Цвет очень часто доминирует над отсутствием цвета (или белизной). Так, например, горох будет цвести белым цветом, только когда он имеет "рецессивную аллель, ответственную за белый цвет" в обеих соответствующих хромосомах, то есть когда он "гомозиготен по белому"; он будет тогда давать чистое потомство, и все его потомки будут белыми. Но уже одна "красная аллель" (в то время как другая белая - "гетерозиготная особь") сделает цветок красным, и совершенно таким же сделают его и две красные аллели ("гомозиготная особь"). Различие последних двух случаев станет выявляться только в потомстве, когда гетерозиготные красные будут производить некоторое количество белых потомков, а гомозиготные красные будут давать чистое потомство.
То, что две особи могут быть совершенно подобны по внешности и, однако, различаться наследственно, столь важно, что желательно дать этому точную формулировку. Генетик говорит, что у особей один и тот же фенотип, но различный генотип. Содержание предыдущих параграфов может быть, таким образом, суммировано в кратком, но высоко техническом выражении: рецессивная аллель влияет на фенотип, только когда генотип гомозиготен.
Мы будем прибегать время от времени к этим техническим выражениям, напоминая читателю их значение, когда это необходимо.
Вредное действие родственного скрещивания
Рецессивные мутации, пока они гетерозиготны, не служат, конечно, материалом для естественного отбора. Если они вредны, как это часто бывает с мутациями, они, тем не менее, не отбрасываются, потому что они скрыты.
Отсюда следует, что очень большое количество неблагоприятных мутаций может накопляться и не причинять непосредственного вреда. Но они, конечно, передаются половине потомства, и это применимо как к человеку, так и к скоту, домашней птице и другим видам, хорошие физические качества которых имеют для нас непосредственное значение. На рис. 9 предполагается, что мужской индивидуум (скажем, для конкретности, я сам) несет такую рецессивную вредную мутацию в гетерозиготном состоянии, так что она не проявляется. Предположим, что моя жена не имеет ее. Тогда половина наших детей (второй ряд) будет также нести ее, и притом опять в гетерозиготном состоянии. Если все они вступят в брак с немутантными партнерами (опущенными в диаграмме, чтобы избежать путаницы), четвертая часть наших внуков в среднем будет затронута подобным же образом.
22
Широко обсуждался вопрос о том, не помогает ли естественному отбору (если не заменяет егоотмечавшаяся тенденция появления полезных или выгодных мутаций. Моя личная точка зрения по этому вопросу не имеет значения. Но необходимо оговорить, что возможность "направленных мутаций" не принимается во внимание в дальнейшем изложении. Более того, я не могу входить здесь также в обсуждение взаимодействия генов-"модификаторов" и "полимерных" генов, какими бы важными ни были эти вопросы для действительного механизма отбора и эволюции.