Фотографий земной поверхности из космоса накопились уже многие тысячи. Число их растет и дальше. Но ведь надо разобрать, что на них изображено. Причем не в общих чертах, как на том проекторе из Института космических исследований, а конкретнее: необходимо точно знать, что именно на данном снимке изображено.

Разгадывать хитроумные картинки Земли помогает ЭВМ. Анализируя космический фотоснимок, ЭВМ обращает внимание в основном на яркость того или иного объекта, на его, как говорят специалисты, тоновую структуру. До геометрии объекта машине дела мало. По крайней мере, попытки научить современные ЭВМ распознавать образы, различать объекты по их очертаниям пока успешными не назовешь. Человек же как раз наоборот: хорошо оценивает очертания предметов. Здесь он дает своему электронному детищу сто очков вперед, но… белое от белого не отличит: глаз не способен уловить тонкие отличия в яркости. На фотографии облако и ледник перепутать легко. Правда, если сопоставить снимки, сделанные в разных зонах спектра, то распознать их вполне можно. Главное достоинство ЭВМ состоит в том, что она способна молниеносно сравнить шесть кадров и выявить итоговую информацию. Человеку такое не под силу.

Как же быть? Как соединить образное видение человека и аналитические способности ЭВМ, сопряженные с быстродействием?

Задача, конечно, очень непростая. Но пути ее решения уже наметились. В Институте космических исследований природных ресурсов Академии наук Азербайджана мне показывали разработанный там оптико-вычислительный комплекс «Паллада». Эта «Паллада» различает 256 уровней яркости — от самого белого до самого черного. Экономический эффект, который принесет применение на практике подобных комплексов, очевиден уже сейчас. Налицо возможность оконтуривать сельскохозяйственные угодья и подсчитывать реальный урожай на них. Или, скажем, выявлять нефтяные пятна загрязнений в море. Машина легко и быстро определит площадь пятна, вычислит стоимость очистных работ, а затем нерадивый капитан судна получит иск, на котором рядом с обычными подписями ответственных лиц могут стоять неожиданные пометки: «Спутник такой-то…», «ЭВМ такая-то…»

Совсем недалеко время, когда привычной станет такая картина. Вот летит спутник. Днем он делает снимок, допустим, какой-нибудь области, обрабатывает его с помощью бортовой ЭВМ и «сбрасывает» информацию на Землю. Здесь полученные данные закладывают в машину, задают нужную программу. Через некоторое время появляется карта, где обозначены границы участков, например, ячменя определенной зрелости, участков с собранным или несобранным хлопком. Рано утром карта в соответствующем министерстве. Руководство получает самые свежие данные, с помощью которых можно контролировать ход сельскохозяйственных работ, своевременно вмешаться, если что-то идет не так. Правда, чтобы такая обратная связь заработала, предстоит сделать немало, но мы должны научиться понимать язык, на котором с нами «разговаривает» космос.

Всякую грамоту постигают с азов. От букв переходят к слогам, потом осваивают слова, и, наконец, становятся понятными целые фразы. В космическом языке буквы — это яркостные характеристики наземных объектов. Они зависят от многих факторов: времени дня, угла падения солнечных лучей, состояния атмосферы; сухая почва и насыщенная влагой отражают лучи по-разному, и так далее. Все параметры можно замерить на Земле. Это и будет своего рода «букварь» космической грамоты. В нем каждый тип наземного народнохозяйственного объекта — будь то виноградник или пшеничное поле, хлопковая плантация или сенокосный луг, солончак или лес — получат свой яркостный «паспорт».

…Во дворе Института космических исследований природных ресурсов Академии наук Азербайджана бакинцы часто видят автомобили-фургоны с броской надписью: «Природа». Они снабжены выдвижными телескопическими штангами наподобие тех, которые поднимают рабочих для ремонта городского освещения, развешивания праздничного убранства улиц и т. п. Только здесь вместо люльки на штанге укреплены приборы — спектрометры. С двенадцатиметровой высоты они регистрируют спектр отраженных от земной поверхности солнечных лучей. Кстати, спектрометр ПС-3 «Каспий», о котором идет речь, придумали и сконструировали сами молодые сотрудники института. И удостоились за это изобретение премии Ленинского комсомола республики.

Первые эксперименты выглядели кустарно. Ученые на время превратились в пахарей и сеятелей, что называется, прямо под окном взрастили на небольших участках различные культуры. Затем подвесили над ними собственноручно изготовленный спектрометр и принялись исследовать, как меняется спектр той или иной делянки в зависимости от периода роста растений.

Эго было начало. Теперь лаборатория по исследованию оптических характеристик природных объектов имеет тестовые участки, у института есть полигон, где та же работа ведется с размахом. Приборы регулярно измеряют температуру почвы, влажность воздуха, силу и направление ветров на опытных делянках. Плюс к тому — и это самое важное — регистрируется спектр отраженных лучей в видимом и ближнем инфракрасном диапазонах, тех самых, что попадают в шесть зон космической фотокамеры МКФ-6. Так рождаются яркостные эталоны, которые можно сопоставить с информацией, полученной из космоса. И тогда удается точно определить: это эталон пшеницы, а это ячменя, да еще в такой-то стадии вегетации.

Если взять только сельское хозяйство, и даже часть его, растениеводство, то и тогда составление подобного каталога яркостных эталонов — задача поистине колоссальная. Ведь нужно определить коэффициент спектральной яркости для множества культур, причем в различных по рельефу местностях (от горизонтальной и наклонной плоскостей лучи отражаются неодинаково) и на разных стадиях зрелости. Помимо этого, надо научиться определять из космоса заболевания растений, а уж такую информацию, сами понимаете, следует добывать как можно быстрее и не путаться при этом в спектрах. Болезни культуры отражаются на кривой спектрограмме, но как? Потребуется немало труда, чтобы собрать статистику. Отработку методики этих важнейших наблюдений специалисты института ведут в одном из районов Азербайджана, на склонах Большого Кавказа.

…Вертолет на высоте двухсот метров весь день неутомимо стрекочет над полем. Оно разбито на несколько участков размером 500 на 500 метров, на которых высажены виноград, люцерна, табак. Через каждые полчаса на борту вертолета получают спектр каждого участка. За десять секунд прибор успевает сделать тридцать две засечки спектральной яркости. В это время на Земле проводятся такие же измерения. Затем те и другие кривые спектров совмещаются и поступают в ЭВМ для дальнейшей обработки. Уместно напомнить, что аналогичные измерения вели и космонавты с борта орбитальной научной станции «Салют-6». Например, Л. Попов и В. Рюмин за полугодие своей работы в космосе сумели сделать более сорока тысяч спектрограмм. Приборы на орбите и на Земле обязаны одинаково и однозначно ответить на вопросы, поставленные учеными.

«Каждая фотография из космоса, — говорит Н. Абдуллаев, руководитель лаборатории по исследованию оптических свойств природных объектов, — это совокупность огромного количества точек разной яркости. Работая с приборами на земле и на вертолете, мы получаем кривые, отражающие спектральную яркость. Надо научиться получать одну кривую из другой, тогда удастся „читать“ снимки из космоса напрямую, в подробностях. И картинка, увиденная из космоса, будет у нас как на ладони. Здесь вам и оперативная информация о процессах, развивающихся в живой природе, и состояние дел в сельском, лесном, водном хозяйствах, и неблаговидные последствия вмешательства человека, и прогнозы на ближайшее будущее, и возможность дать конкретные рекомендации специалистам народного хозяйства. Только нужны эталоны. Пока мы отрабатываем лишь некоторые из них: водный объект, каштановая почва, солончак, несколько классов основных сельскохозяйственных культур нашей республики».

Методики, о которых рассказывал Н. Абдуллаев, можно применять не только в Азербайджане, но и в различных районах земного шара. Ячмень, как говорится, он и в Африке ячмень. Однако составление каталогов всех наземных объектов, имеющих народнохозяйственное значение, займет, конечно же, несколько лет. В перспективе космическую фотографию окажется возможным расшифровать моментально. Получил снимок — через полчаса уже итог: здесь запечатлено то-то, а здесь — то-то. Вот тогда мы сможем сказать, что полностью овладели языком, на котором с нами разговаривает космос.


Перейти на страницу:
Изменить размер шрифта: