Космос — землянам i_004.png

Тщательное изучение многих сотен спектрограмм принесло разгадку. Дело в том, что для конденсаций характерна очень высокая температура. Если на поверхности Солнца «всего лишь» 6 тысяч градусов, в короне уже «пожарче» — до одного миллиона, то в конденсациях температура достигает 3–5 миллионов градусов. Вот почему атомы, словно не выдержав чудовищной жары, «раздеваются», теряя свои электроны. Так установили природу солнечного рентгена: его порождает местный разогрев отдельных участков короны.

Ну и какое нам, казалось бы, дело до этого? Рентгеновское излучение до земной поверхности все равно не доходит. Может ли оно существенно повлиять на свойства окружающего нас мира?

Оказывается, может, и самым непосредственным образом. Наряду с ультрафиолетом рентгеновское излучение обеспечивает нам дальнюю радиосвязь. Обрушиваясь на атмосферу, оно разбивает ее атомы, срывая с них электроны и превращая в ионы. Так образуется ионосфера — «зеркало», отражающее радиоволны наземных радиостанций. Но это еще не все.

Рентгеновские лучи пагубно действуют на покрытие космических аппаратов, и с этим приходится считаться конструкторам. Белая краска, например, с течением времени темнеет. А это может нарушить температурный режим внутри спутника. Поэтому сейчас все покрытия для космических аппаратов проходят обязательную проверку на рентгеноустойчивость.

Вот вам конкретная польза от исследований, которые еще далеко не закончены.

Давно было замечено, что вспышка на Солнце неизменно сопровождается нарушением радиосвязи на всей освещенной части планеты. Долгое время было непонятно, как работает механизм этого явления. Все встало на свои места, когда удалось установить, что в том месте, где происходит вспышка, резко, в тысячу раз, увеличивается рентгеновское излучение. Оно-то и вызывает ионосферные возмущения, из-за которых нарушается радиосвязь на Земле.

Однако связать рентгеновское излучение со вспышками — это полдела. Надо было определить, где и отчего возникают вспышки, как они протекают? Для этих исследований в Физическом институте АН СССР имени П. Н. Лебедева придумали и построили специальную аппаратуру. С ее помощью ученые выяснили, что солнечное вещество при вспышке нагревается до 30–50 миллионов градусов. Эта чудовищная температура порождает резкий всплеск мощного, или, как говорят специалисты, жесткого, рентгеновского излучения. Энергия такого своеобразного взрыва, происходящего в солнечной атмосфере, эквивалентна миллиарду водородных бомб! Откуда же она берется на Солнце?

И снова спутники и ракеты понесли в космос фотокамеры, спектрографы, поляриметры… В конце концов ученые убедились, что вспышка черпает энергию из магнитного поля Солнца. Когда оно перестраивается, то в плазме солнечной короны образуются мощные электрические токи, подобно тому как они возбуждаются в динамо-машине. Эти токи при определенных условиях нагревают солнечное вещество до немыслимо огромной температуры. Вот вам и вспышка. Иногда вспышку вызывает своего рода «разрыв» токовой цепи. Тогда в этом месте частицы плазмы разгоняются до колоссальных скоростей и вырываются в пространство. Между прочим, некоторые из них — протоны — могут быть опасными для космонавтов.

Исследования рентгеновского излучения позволили лучше понять природу вспышек на Солнце. И все же при этом завеса, скрывающая тайны нашего светила, лишь чуть-чуть приоткрылась. И надо планировать новые эксперименты, разрабатывать новые приборы, создавать новые теории.

Вот и получается, что свои самые смелые надежды на будущие фундаментальные открытия, на дальнейший прогресс астрономии и астрофизики ученые связывают с космонавтикой. Здесь уместно вспомнить одну истину: крупнейшие открытия в астрономии были сделаны не в результате поисков, предпринятых на основе предсказаний или догадок, а просто благодаря тому, что наблюдения стали вестись методами и средствами, резко отличавшимися от имевшихся до этого. Эта истина справедлива для всех этапов развития астрономии от телескопчика Галилея до советского шестиметрового телескопа-гиганта БТА и от него — до выхода в необъятные просторы космоса.

В поисках «черных дыр»

Об этом узнали сравнительно недавно, каких-нибудь двадцать лет назад. Оказалось, что если бы наши глаза могли видеть только рентгеновское излучение, то звездное небо над нами выглядело бы совсем иначе. Правда, рентгеновские лучи, испускаемые Солнцем, удалось обнаружить еще до рождения космонавтики, но о других источниках в звездном небе и не подозревали. На них наткнулись случайно.

В 1962 году американцы, решив проверить, не исходит ли от поверхности Луны рентгеновское излучение, запустили ракету, снабженную специальной аппаратурой. Вот тогда-то, обрабатывая результаты наблюдений, радиоастроном Джиаккони убедился, что приборы отметили мощный источник рентгеновского излучения. Он располагался в созвездии Скорпион. Ему дали обозначение Х-1 (икс-один). С помощью высотных ракет на карту звездного неба вскоре нанесли более 30 рентгеновских источников.

Несмотря на первые успехи, подобные наблюдения не устраивали ученых: слишком они были кратковременны — всего несколько минут. А ведь над планетой уже вовсю кружили спутники, способные выносить в космос рентгеновскую аппаратуру на месяцы и годы. Они-то и стали технической базой нового направления в изучении неба — рентгеновской астрономии. В начале 70-х годов на орбиту вышли первые два спутника, предназначенных для поиска и исследований источников рентгеновских лучей во вселенной, — американский «Ухуру» и советский «Космос-428».

К тому времени кое-что уже начало проясняться. Объекты, испускающие рентгеновские лучи, сумели связать с еле видимыми звездами, обладающими необычными свойствами. Это были компактные сгустки плазмы ничтожных, конечно по космическим меркам, размеров и масс, раскаленные до нескольких десятков миллионов градусов. При весьма скромной наружности эти объекты обладали колоссальной мощностью рентгеновского излучения, в несколько тысяч раз превышающей полную светимость Солнца.

Сама плазма, даже нагретая до столь высоких температур, не может долго давать такое интенсивное излучение. Всей ее тепловой энергии хватило бы лишь на доли секунды. A наиболее известные рентгеновские источники наблюдаются уже по нескольку лет, и все это время работают не иссякая. Значит, внутри плазменного сгустка есть еще что-то, какой-то невидимый генератор, постоянно питающий его своей энергией.

«На какой-то миг создалось впечатление, что таинственные нейтронные звезды — гордость теоретической мысли XX века — наконец-то обнаружены. Увы, природа и на этот раз оказалась намного сложнее и богаче», — писал известный астрофизик И. Шкловский.

Действительно, давно предсказанные нейтронные звезды искали уже не первый год. Эти крохотные, диаметром около десяти километров, останки полностью выгоревших звезд, сжавшиеся до чудовищной плотности, должны были хоть как-то заявить о себе. Этого с нетерпением ждали. Поэтому так охотно в рентгеновских источниках «узнавали» нейтронные звезды. И ведь, казалось бы, все сходилось. Но расчеты опровергли надежды: только что образовавшиеся нейтронные звезды должны были бы сразу остыть и перестать излучать. А эти лучились рентгеном. Снова, подобно сказочной Синей птице, нейтронные звезды, что называется, выскользнули из рук ученых. Рентгеновские источники по-прежнему оставались вещью в себе. Острая нужда в новых фактах становилась все более очевидной. И ждали их прежде всего из космоса.

Приборы «Ухуру» и «Космоса-428» работали в различных диапазонах длин волн. Американский аппарат предназначался для поисков «мягкого» рентгена, советский — «жесткого». Спутники неплохо дополняли друг друга. После полета «Ухуру» число известных рентгеновских источников перевалило за сотню. Но главное было не в этом. Исследователи обнаружили строго периодические изменения потоков излучения некоторых из них. Был определен и период этих вариаций — обычно он не превышал нескольких суток.


Перейти на страницу:
Изменить размер шрифта: