В одной из своих популярных лекций немецкий медик и физик Г. Гельмгольц высказал любопытную мысль: если принять предположения П. Лапласа о том, что Солнце и его система произошли из туманности, причем процесс сжатия небесных тел не прекратился, а продолжается и поныне, то не может ли этот самый механизм сжатия восполнять потери на излучение? То есть не может ли механическая энергия сжатия переходить в тепловую?

Г. Гельмгольц произвел расчеты и получил интересные цифры. Сокращение диаметра Солнца всего на одну десятитысячную обеспечило бы покрытие тепловых потерь в течение более чем двух тысячелетий.

Против теории Г. Гельмгольца выступил инженер Карл В. Сименс, член гигантской фирмы «Сименс и Гальске», основанной его братом Эрнстом.

К. Сименс жил в Англии, где принял имя Вильяма, и был известен как сторонник и пропагандист всевозможных регенераторов к паровым машинам, регенеративных печей, регенеративных конденсаторов и прочее.

Экономный, как все немцы, В. Сименс не мог потерпеть того факта, что львиная доля солнечной энергии теряется в мировом пространстве и лишь ничтожная часть употребляется с пользой, нагревая планеты. Чтобы исправить положение, он предложил гипотезу, якобы объясняющую возвращение Солнцу истраченного тепла. Для этого он заполнил все мировое пространство газами, конечно, находящимися в разреженном состоянии. Каждое светило силой притяжения создает себе из этих газов атмосферу. Нижние слои ее состоят из тяжелых газов, верхние из легких, например из горючего водорода.

Теперь представим себе огромный солнечный шар, бешено крутящийся в пространстве. С экватора его под действием центробежной силы должны срываться огромные массы тяжелых газов и улетать прочь. Одновременно через полюсы к нему будут притекать потоки нового легкого и горючего газа, который, сгорая, возмещает потери Солнца на излучение. В. Сименс предлагает модель Солнца в виде некой регенеративной печи, в которой происходит восстановление жидкого вещества из продуктов сгорания… Странная с современных позиций гипотеза пользовалась успехом. Ф. Розенбергер, автор капитального труда «История физики», в 1892 году пишет: «Приведенные теории сохранения солнечной энергии (имеются в виду гипотезы Р. Майера, Г. Гельмгольца и В. Сименса.  — А. Т. ) не противоречат друг другу, не заключают в себе ничего невероятного и могут существовать рядом. В настоящую минуту самая живая из них теория Сименса, но наиболее грандиозная, без сомнения, майеровская, так как она соединяет нашу систему с прочими телами вселенной и обещает сохранение солнечной системы вплоть до всеобщего конца, т. е. до выравнивания энергии во всей вселенной».

Интересная цитата, если вдуматься. Некогда, занимаясь исследованием работы паровых машин, С. Карно пришел к выводу, что даже при отсутствии всякого трения ни одна машина, превращающая тепло в работу, не может иметь стопроцентного коэффициента полезного действия, КПД. Дело в том, что часть тепла, а значит и тепловой энергии, непременно от котла переходит к конденсатору, нагревая последний. Следовательно, часть энергии будет всегда теряться, повышая температуру конденсатора. Так будет происходить до тех пор, пока температура котла и конденсатора не сравняется. После чего машина перестанет работать. Отсюда С. Карно пришел ко второму принципу термодинамики, обобщенному в дальнейшем Р. Клаузиусом и В. Томсоном. Сегодня этот закон читается так: «В замкнутой системе любые процессы приводят к нарастанию энтропии». Энтропия — это мера обесценивания энергии.

Солнечная система тоже может служить иллюстрацией к этому закону. В соответствии со сформулированным принципом эволюция идет только в одну сторону. Следовательно, в конце всегда смерть. Но раз в промежутке существование, то должно было быть и начало, то есть рождение. Пусть рождение солнечной системы обязано проявлению космических сил. А если распространить второй принцип термодинамики на весь мир? Кто его создал? Похоже, что как ни верти, а без бога не обойдешься. Вот к какому выводу приводит нас безобидная цитата.

Против «тепловой смерти вселенной» выступали многие выдающиеся ученые XIX века. И сейчас страхи по этому поводу имеют чисто исторический интерес. XX век вообще положил конец умозрительным заключениям, выступавшим нередко в прошлом в качестве научных гипотез. Новое время предложило и новые методы. Чтобы двигаться дальше, нужно было прежде обобщить накопленную информацию. Непрерывное же выдвижение гипотез напоминало бег на месте.

Солнце без гипотез и теория «термояда»

Что же мы знаем о Солнце сегодня? Давайте составим нечто вроде медицинской карты на наше светило; примерно такой, какие в бесчисленном количестве составляют на нас с вами в поликлиниках вместо того, чтобы просто отправить в санаторий. Только факты, без всяких там домыслов и гипотез.

Ну, прежде всего угловой диаметр и расстояние до Земли. Обе величины нетрудно измерить. Затем количество солнечной лучистой энергии, падающей на единицу земной поверхности в единицу времени. Для этого измерения лучше всего отправиться, конечно, на экватор. Но если на экватор не хотите, опыт можно произвести и дома в полдень… Дальше, сравнивая цвет Солнца с цветом раскаленного вещества на Земле, мы косвенно можем судить о поверхностной температуре светила. А, изучив возраст самых старых земных пород, можно примерно назвать нижнюю границу возраста Солнца. Ведь считать, что Земля старше Солнца вряд ли целесообразно. Если добавить еще и период обращения Земли (или любой другой планеты), который понадобится для определения массы Солнца, и группу данных, определяющих наше светило как члена Галактики, то, пожалуй, все наблюдаемые характеристики этим и исчерпываются. Можно бы, конечно, еще добавить, например, скорость вращения Солнца, вычисленную по скорости перемещения его пятен, но тут есть одна неприятность. Во-первых, пятна на солнечном диске видны только в поясе от +40 градусов до –40 градусов гелиографической широты. В более высоких широтах их почти не заметно. Во-вторых, вращается-то Солнце на разных уровнях по-разному: на экваторе — быстрее, ближе к полюсам — медленнее. Какую же скорость принять в качестве основной?

Теперь давайте сведем наблюдаемые характеристики Солнца в таблицу.

Наблюдаемые характеристики Солнца
(по П. Куликовскому)

Угловой диаметр … 31′59″26

Расстояние от Земли … (149 504 000 ± 17 000) км

Солнечная постоянная … 1,39 · 10 6 эрг/сек см 2

Температура поверхности … 6000°К

Возраст … (4,5—6) · 10 9лет

Период обращения Земли (звездный, или сидерический, год) … 365,25636 суток

Наклон солнечного экватора к эклиптике … 7°15′

Скорость движения Солнца относительно окружающих его звезд … 19,5 км/сек

Расстояние Солнца от центра Галактики … 8000 парсек = 2450 световых лет

Скорость движения Солнца вокруг центра Галактики … 250 км/сек

Период обращения Солнца вокруг центра Галактики … 1,8 · 10 8лет

По этим данным, произведя некоторые вычисления, можно составить еще одну таблицу. Между прочим, гораздо более важную, чем первая, с точки зрения астрофизиков.

Вычисленные характеристики Солнца
(по П. Куликовскому)

Масса … 1,983 · 10 33 г

Средняя плотность … 1,41 г/см 3

Общая радиация (светимость) … 3,78 · 10 33 эрг/сек

Диаметр … 1 390 600 км

Объем … 1,412 · 10 15 км 3

Ускорение силы тяжести на поверхности Солнца … 2,738 · 10 4 см/сек 2

Критическая скорость или скорость освобождения … 619,4 км/сек

И наконец, для сравнения Солнца с остальными звездами астрофизики ввели еще несколько характеристик.


Перейти на страницу:
Изменить размер шрифта: