Если G является кольцом, то прямая сумма Н*(Х; G) групп H n (X; G) является алгеброй над G . Более того, эта прямая сумма обладает очень сложной алгебраической структурой, в которую (при G = Zp , где Zp — циклическая группа порядка р ) входит действие на Н*(Х; G) некоторой некоммутативной алгебры

Большая Советская Энциклопедия (ТО) i-images-194206863.png
p , называемой алгеброй Стинрода. Сложность этой структуры позволяет, с одной стороны, выработать эффективные (но совсем не простые) методы вычисления групп H n (X; G), а с другой — установить связи между группами H n (X; G) и другими гомотопически инвариантными функторами (например, гомотопическими группами pn X ), позволяющие часто в явном виде вычислить и эти функторы.

  Исторически группам когомологий предшествовали так называемые группы гомологий Hn (X; G) , являющиеся гомотопическими группами pn M(X, G) некоторого клеточного пространства M(X, G) , однозначно строящегося по клеточному пространству Х и группе G . Группы гомологий и когомологий в определённом смысле двойственны друг другу, и их теории по существу равносильны. Однако алгебраическая структура, имеющаяся в группах гомологий, менее привычна (например, эти группы составляют не алгебру, а так называемую коалгебру), и поэтому в вычислениях обычно пользуются группами когомологий. Вместе с тем в некоторых вопросах группы гомологий оказываются более удобными, поэтому они также изучаются. Часть алгебраических Т., занимающаяся изучением (и применением) групп гомологий и когомологий, называется теорией гомологий.

  Перенесение результатов алгебраических Т. на пространства более общие, чем клеточные пространства, составляет предмет так называемой общей алгебраической Т. В частности, общая теория гомологий изучает группы гомологий и когомологий произвольных топологических пространств и их применения. Оказывается, что вне класса компактных клеточных пространств различные подходы к построению этих групп приводят, вообще говоря, к различным результатам, так что для неклеточных топологических пространств возникает целый ряд различных групп гомологий и когомологий. Основное применение общая теория гомологий находит в теории размерности и в теории так называемых законов двойственности (описывающих взаимоотношения между топологическими свойствами двух дополнительных подмножеств топологического пространства), и её развитие было во многом стимулировано нуждами этих теорий.

4. Кусочно-линейная топология

  Подмножество Р Î

Большая Советская Энциклопедия (ТО) i-images-144386158.png
 называется конусом с вершиной а и основанием В , если каждая его точка принадлежит единственному отрезку вида ab , где b Î В. Подмножество Х Î
Большая Советская Энциклопедия (ТО) i-images-167703185.png
 называется полиэдром, если любая его точка обладает в Х окрестностью, замыкание которой является конусом с компактным основанием. Непрерывное отображение f : X ® Y полиэдров называется кусочно-линейным, если оно линейно на лучах каждой конической окрестности любой точки х Î X. Взаимно однозначное кусочно-линейное отображение, обратное к которому также кусочно-линейно, называется кусочно-линейным изоморфизмом. Предметом кусочно-линейной Т. является изучение полиэдров и их кусочно-линейных отображений. В кусочно-линейной Т. полиэдры считаются одинаковыми, если они кусочно-линейно изоморфны.

  Подмножество Х Î

Большая Советская Энциклопедия (ТО) i-images-191757111.png
 тогда и только тогда является (компактным) полиэдром, когда оно представляет собой объединение (конечного) семейства выпуклых многогранников. Любой полиэдр может быть представлен в виде объединения симплексов , пересекающихся только по целым граням. Такое представление называют триангуляцией полиэдра. Каждая триангуляция однозначно определена её симплициальной схемой, то есть множеством всех её вершин, в котором отмечены подмножества, являющиеся множествами вершин симплексов. Поэтому вместо полиэдров можно рассматривать лишь симп-лициальные схемы их триангуляций. Например, по симплициальной схеме можно вычислять группы гомологий и когомологий. Это делается следующим образом:

  а) симплекс, вершины которого определённым образом упорядочены, называется упорядоченным симплексом данной триангуляции (или симплициальной схемы) К ; формальные линейные комбинации упорядоченных симплексов данной размерности n с коэффициентами из данной группы G называются n -мepными цепями; все они естественным образом составляют группу, которая обозначается символом C n (K; G) ;

  б) выбросив из упорядоченного n -мерного симплекса s вершину с номером i , 0 £ i £ n, получим упорядоченный (n— 1)-мерный симплекс, который обозначается символом s(i ) ; цепь

Большая Советская Энциклопедия (ТО) i-images-173819181.png
 называется границей s; по линейности отображение
Большая Советская Энциклопедия (ТО) i-images-133484104.png
 распространяется до гомоморфизма
Большая Советская Энциклопедия (ТО) i-images-130554797.png
  : Cn (K; G) ® Cn -1 (K; G) ;

  в) цепи с , для которых

Большая Советская Энциклопедия (ТО) i-images-127062574.png
 = 0, называются циклами, они составляют группу циклов Zn (K; G);

  г) цепи вида

Большая Советская Энциклопедия (ТО) i-images-118086676.png
 называются границами, они составляют группу границ Bn (K; G) ;

  д) доказывается, что Bn (K; G) Ì Zn (K; G) (граница является циклом); поэтому определена факторгруппа

  Hn (K; G) = Zn (K; G)/ Bn (K; G) .

  Оказывается, что группа Hn (K; G) изоморфна группе гомологий Hn (X; G) полиэдра X , триангуляцией которого является К . Аналогичная конструкция, в которой исходят не из цепей, а из коцепей (произвольных функций, определённых на множестве всех упорядоченных симплексов и принимающих значения в G ), даёт группы когомологий.

  С этой конструкции, изложенной здесь в несколько модифицированной форме, и началось по существу становление алгебраической Т. В первоначальной конструкции рассматривались так называемые ориентированные симплексы (классы упорядоченных симплексов, отличающихся чётными перестановками вершин). Эта конструкция развита и обобщена в самых разнообразных направлениях. В частности, её алгебраические аспекты дали начало так называемой гомологической алгебре.

  Самым общим образом симплициальную схему можно определить как множество, в котором отмечены некоторые конечные подмножества («симплексы»), причём требуется, чтобы любое подмножество симплекса было снова симплексом. Такая симплициальная схема является симплициальной схемой триангуляции некоторого полиэдра тогда и только тогда, когда число элементов произвольного отмеченного подмножества не превосходит некоторого фиксированного числа. Впрочем, понятие полиэдра можно обобщить (получив так называемые «бесконечномерные полиэдры»), и тогда уже любая симплициальная схема будет схемой триангуляции некоторого полиэдра (называемого её геометрической реализацией).

  Произвольному открытому покрытию {U a } каждого топологического пространства Х можно сопоставить симплициальную схему, вершинами которой являются элементы U a покрытия и подмножество которой тогда и только тогда отмечено, когда элементы покрытия, составляющие это подмножество, имеют непустое пересечение. Эта симплициальная схема (и соответствующий полиэдр) называемому нервом покрытия. Нервы всевозможных покрытий в определённом смысле аппроксимируют пространство Х и, исходя из их групп гомологий и когомологий, можно посредством соответствующего предельного перехода получать группы гомологий и когомологий самого X . Эта идея лежит в основе почти всех конструкций общей теории гомологий. Аппроксимация топологического пространства нервами его открытых покрытий играет важную роль и в общей Т.


Перейти на страницу:
Изменить размер шрифта: