Замечательно, что для компактных и связных топологических многообразий размерности n ³ 5 ситуация оказывается совсем иной: все основные задачи для них можно считать в принципе решенными (точнее, сведёнными к проблемам алгебраической Т.). Любое гладкое многообразие Х вкладывается как гладкая (n -мepная) поверхность в

Большая Советская Энциклопедия (ТО) i-images-120639767.png
; и касательные векторы к Х составляют некоторое новое гладкое многообразие TX, которое называется касательным расслоением гладкого многообразия X . Вообще, векторным расслоением над топологическим пространством Х называется топологическое пространство Е, для которого задано такое непрерывное отображение p : Е ® Х , что для каждой точки х Î Х прообраз v (слой) является векторным пространством и существует такое открытое покрытие {U a } пространства X , что для любого a прообраз p—1 (U a ) гомеоморфен произведению U a ´
Большая Советская Энциклопедия (ТО) i-images-140342619.png
, причём существует гомеоморфизм p—1 (U a ) ® U a ´
Большая Советская Энциклопедия (ТО) i-images-124943040.png
, линейно отображающий каждый слой p—1 (x), x Î U a , на векторное пространство {х} ´
Большая Советская Энциклопедия (ТО) i-images-122014510.png
. При Е = TX непрерывное отображение p сопоставляет с каждым касательным вектором точку его касания, так что слоем p—1 (x) будет пространство, касательное к Х в точке х. Оказывается, что любое векторное расслоение над компактным пространством Х определяет некоторый элемент группы KO(X). Таким образом, в частности, для любого гладкого, компактного и связного многообразия Х в группе KO(X) определён элемент, соответствующий касательному расслоению. Он называется тангенциальным инвариантом гладкого многообразия X . Имеется аналог этой конструкции для любого a. При a = p роль группы KO(X) играет некоторая другая группа, которая обозначается KPL(X), а при a = t роль этой группы играет группа, обозначаемая KTop(X). Каждое a-многообразие Х определяет в соответствующей группе [КО(Х) , KPL(X) или KTop(X) ] некоторый элемент, называемый его a-тангенциальным инвариантом. Имеются естественные гомоморфизмы KO(X) ® KPL(X) ® KTop(X) , и оказывается, что на n -мерном (n ³ 5 ) компактном и связном a'-многообразии X , где a' = t , p , тогда и только тогда можно ввести a-структуру (a = р, если a' = t, и a = s, если a' = p ), когда его a'-тангенциальный инвариант лежит в образе соответствующей группы [KPL(X) при a' = t и KO(X) при a' = p ]. Число таких структур конечно и равно числу элементов некоторого фактормножества множества [X , Y a ], где Y a — некоторое специальным образом сконструированное топологическое пространство (при a = s топологическое пространство Y a обозначается обычно символом PL/O , а при a = p — символом Top/PL ). Тем самым вопрос о существовании и единственности a-структуры сводится к некоторой задаче теории гомотопий. Гомотопический тип топологического пространства PL/O довольно сложен и до сих пор (1976) полностью не вычислен; однако известно, что pi (PL/O ) = 0 при i £ 6, откуда следует, что любое кусочно-линейное многообразие размерности n £ 7 сглаживаемо, а при n £ 6 единственным образом. Напротив, гомотопический тип топологического пространства Top/PL оказался удивительно простым: это пространство гомотопически эквивалентно K (ℤ2 , 3). Следовательно, число кусочно-линейных структур на топологическом многообразии не превосходит числа элементов группы H 3 (X , ℤ2 ). Такие структуры заведомо существуют, если H 4 (X , ℤ2 ) = 0, но при H 4 (X , ℤ2 ) ¹ 0 кусочно-линейной структуры может не существовать.

  В частности, на сфере S n существует единственная кусочно-линейная структура. Гладких структур на сфере S n может быть много, например, на S 7 существует 28 различных гладких структур. На торе T n (топологических произведении n экземпляров окружности S 1 ) существует при n ³ 5 много различных кусочно-линейных структур, которые все допускают гладкую структуру. Таким образом, начиная с размерности 5, существуют гомеоморфные, но не диффеоморфные гладкие многообразия; сферы с таким свойством существуют, начиная с размерности 7.

  Задачу описания (с точностью до a-гомеоморфизма) всех n -мерpных (n ³ 5) связных компактных a-многообразий естественно решать в два этапа: искать условия гомотопической эквивалентности a-многообразий и условия a-гомеоморфности гомотопически эквивалентных a-многообразий. Первая задача относится к гомотопической Т. и в её рамках может считаться полностью решенной. Вторая задача также по существу полностью решена (во всяком случае для односвязных a-многообразий). Основой её решения является перенос в высшие размерности техники «разложения на ручки». С помощью этой техники удаётся, например, доказать для n -мерных (n ³ 5) топологических многообразий гипотезу Пуанкаре (связное компактное топологическое многообразие, гомотопически эквивалентное сфере, гомеоморфно ей).

  Наряду с a-многообразиями можно рассматривать так называемые a-многообразия с краем; они характеризуются тем, что окрестности некоторых их точек (составляющих край) a-гомеоморфны полупространству X n ³ 0 пространства

Большая Советская Энциклопедия (ТО) i-images-144662343.png
. Край является (n— 1)-мерным a-многообразием (вообще говоря, несвязным). Два n -мерных компактных a-многообразия Х и Y называются (ко) бордантными, если существует такое (n +1)-мерное компактное a-многообразие с краем W, что его край является объединением непересекающихся гладких многообразий, a-гомеоморфных Х и У . Если отображения вложения X ® W и Y ® W являются гомотопическими эквивалентностями, то гладкие многообразия называются h -кобордантными. Методами разложения на ручки удаётся доказать, что при n ³ 5 односвязные компактные a-многоооразия a-гомеоморфны, если они h -кобордантны. Эта теорема о h -кобордизме доставляет сильнейший способ установления a-гомеоморфности a-многообразий (в частности, гипотеза Пуанкаре является её следствием). Аналогичный, но более сложный результат имеет место и для неодносвязных a-многообразий.

  Совокупность

Большая Советская Энциклопедия (ТО) i-images-159065611.png
 классов кобордантных компактных a-многообразий является по отношению к операции связной суммы коммутативной группой. Нулём этой группы служит класс a-многообразий, являющихся краями, то есть кобордантных нулю. Оказывается, что эта группа при a = s изоморфна гомотопической группе p2n+1 MO (n+ 1) некоторого специально сконструированного топологического пространства MO (n+ 1), называется пространством Тома. Аналогичный результат имеет место и при a = p , t . Поэтому методы алгебраической Т. позволяют в принципе вычислить группу
Большая Советская Энциклопедия (ТО) i-images-118476617.png
. В частности, оказывается, что группа
Большая Советская Энциклопедия (ТО) i-images-126987977.png
 является прямой суммой групп ℤ2 в количестве, равном числу разбиений числа n на слагаемые, отличные от чисел вида 2m —1. Например,
Большая Советская Энциклопедия (ТО) i-images-139801851.png
= 0 (так что каждое трёхмерное компактное гладкое многообразие является краем). Напротив,
Большая Советская Энциклопедия (ТО) i-images-137229303.png
 = ℤ2 , так что существуют поверхности, кобордантные друг другу и не кобордантные нулю; такой поверхностью, например, является проективная плоскость
Большая Советская Энциклопедия (ТО) i-images-110454488.png
P 2 .


Перейти на страницу:
Изменить размер шрифта: