С. с. изготавливают со сцинтилляторами разных размеров — объёмом от 1—2 мм3 до 1—2 м3. Чтобы не «потерять» излученный свет, необходим хороший контакт ФЭУ со сцинтиллятором. В С. с. небольших размеров сцинтиллятор непосредственно приклеивается к фотокатоду ФЭУ. Все остальные его стороны покрываются слоем светоотражающего вещества (например, MgO, TiO2). В С. с. большого размера используют световоды (обычно из полированного органического стекла).
ФЭУ, предназначенные для С. с., должны обладать высокой эффективностью фотокатода (до 2,5%), высоким коэффициентом усиления (108—108), малым временем собирания электронов (~ 10–8 сек) при высокой стабильности этого времени. Последнее позволяет достичь разрешающей способности по времени С. с. £10–9 сек. Высокий коэффициент усиления ФЭУ наряду с малым уровнем собственных шумов делает возможной регистрацию отдельных электронов, выбитых с фотокатода. Сигнал на аноде ФЭУ может достигать 100 в.
Табл. 1. — Характеристики некоторых твёрдых и жидких сцинтилляторов,
применяемых в сцинтилляционных счётчиках
Вещество | г/см3 | -9сек. | Конверсионная эффективность h, % (для электронов) | |
Кристаллы | ||||
14 10 | 1,25 | 30 | 4450 | 4 |
1412 | 1,16 | 6 | 4100 | 3 |
NaI (Tl) | 3,67 | 250 | 4100 | 6 |
ZnS (Ag) | 4,09 | 11 | 4500 | 10 |
Csl (Tl) | 4,5 | 700 | 5600 | 2 |
Жидкости | ||||
р1 | 0,86 | 2 | 3500 | 2 |
р | 0,86 | 2,7 | 4300 | 2,5 |
Пластики | ||||
р2 | 1,06 | 2,2 | 4000 | 1,6 |
р | 1,1 | 3 | 4300 | 2 |
1РОРОР — 1,4-ди-[2-(5-фенилоксазолил)]-бензол. 2NPO — 2-(1-нафтил)-5-фенилоксазол.
Достоинства С. с.: высокая эффективность регистрации различных частиц (практически 100%); быстродействие; возможность изготовления сцинтилляторов разных размеров и конфигураций; высокая надёжность и относительно невысокая стоимость. Благодаря этим качествам С. с. широко применяется в ядерной физике, физике элементарных частиц и космических лучей, в промышленности (радиационный контроль), дозиметрии, радиометрии, геологии, медицине и т. д. Недостатки С. с.: малая чувствительность к частицам низких энергий (£ 1 кэв), невысокая разрешающая способность по энергии (см. Сцинтилляционный спектрометр).
Для исследования заряженных частиц малых энергий (< 0,1 Мэв) и осколков деления ядер в качестве сцинтилляторов применяются газы (табл. 2). Газы обладают линейной зависимостью величины сигнала от энергии частицы в широком диапазоне энергий, быстродействием и возможностью менять тормозную способность изменением давления. Кроме того, источник может быть введён в объём газового сцинтиллятора. Однако газовые сцинтилляторы требуют высокой чистоты газа и специального ФЭУ с кварцевыми окнами (значительная часть излучаемого света лежит в ультрафиолетовой области).
Табл. 2. — Характеристики некоторых газов, применяемых в качестве
сцинтилляторов в сцинтилляционных счётчиках (при давлении 740 мм
рт. ст., для a-частиц с энергией 4,7 Мэв)
Газ | сек | Конверсионная эффективность n, % | |
Ксенон | –8 | 3250 | 14 |
Криптон | –8 | 3180 | 8,7 |
Аргон | –8 | 2500 | 3 |
Азот | –9 | 3900 | 2 |
Лит.: Бирке Дж., Сцинтилляционные счетчики, пер. с англ., М., 1955; Калашникова В. И., Козодаев М. С., Детекторы элементарных частиц, в кн.: Экспериментальные методы ядерной физики, М., 1966; Ритсон Д., Экспериментальные методы в физике высоких энергий, пер. с англ., М., 1964.
В. С. Кафтанов.
Схема сцинтилляционного счётчика: кванты света (фотоны) «выбивают» электроны с фотокатода; двигаясь от динода к диноду, электронная лавина размножается.
Сцинтилляция
Сцинтилля'ция (от лат. scintillatio — мерцание), кратковременная (~10–4—10–9 сек) световая вспышка (вспышка люминесценции), возникающая в сцинтилляторах под действием ионизирующих излучений. С. впервые визуально наблюдал У. Крукс (1903) при облучении (a-частицами экрана из ZnS. Атомы или молекулы сцинтиллятора за счёт энергии заряженных частиц переходят в возбуждённое состояние; последующий переход из возбуждённого в нормальное состояние сопровождается испусканием света — С. Механизм С., её спектр излучения и длительность высвечивания зависят от природы люминесцирующего вещества. Яркость С. зависит от природы заряженных частиц и от энергии частицы, передаваемой при её пробеге в веществе (например, С. a-частиц и протонов значительно ярче С. b-частиц). Каждая С. — результат действия одной частицы; это обстоятельство используют в сцинтилляционных счётчиках для регистрации элементарных частиц.
Сциофиты
Сциофи'ты (от греч. skiá — тень и phytón — растение), то же, что теневыносливые растения.
Сципионы
Сципио'ны (Scipiones), в Древнем Риме одна из ветвей патрицианского рода Корнелиев, к которой принадлежал ряд крупных полководцев и государственных деятелей. Среди них: Публий Корнелий Сципио н Африканский Старший (Publius Cornelius Scipio Africanus Major) (около 235 — около 183 до н. э.), полководец времени 2-й Пунической войны. В качестве военного трибуна сражался при Каннах (216). Курульный эдил 213. В 207 нанёс поражение карфагенскому полководцу Гасдрубалу в Испании. Консул 205. Разгромил армию Ганнибала при Заме (202). Играл видную роль в политической жизни Рима. С 199 цензор и принцепс сената, консул 194. Широко образованный человек, симпатизировал греческой культуре. Луций Корнелий Сципион Азиатский (Lucius Cornelius Scipio Asiaticus), брат Сципиона Старшего. Консул 190. Победитель селевкидского царя Антиоха III в битве при Магнесии (190). Публий Корнелий Сципион Эмилиан Африканский Младший (Publius Cornelius Scipio Aemilianus Africanus Junior) (около 185—129 до н. э.), полководец и политический деятель. Приёмный внук Сципиона Старшего. В 146, будучи консулом, захватил и разрушил Карфаген, завершив 3-ю Пуническую войну, в 133, будучи вторично консулом, подавил восстание нумантинцев в Испании. Несмотря на родственные связи с Гракхами, С. враждебно относился к их аграрной программе. Римская традиция изображает С. ревностным поклонником эллинской культуры, объединявшим вокруг себя писателей, стремившихся перенести на римскую почву греческую образованность и искусства («сципионов кружок»), сторонником укрепления государства путём раздачи италикам-арендаторам государственной земли.