Чтобы понять суть этих вопросов, у себя дома в ванне проведите быстро под водой раскрытой ладошкой, и вы ощутите, что это объяснение Генпрокуратуры взывает большие сомнения. Они усилятся, если Вы знаете, что согласно законам гидромеханики всякие листоподобные по форме тела, во-первых , имеют склонность занимать положение поперёк потока, быстро утрачивая в таком положении кинетическую энергию ( mV 2 /2); а во-вторых , они гидродинамически неустойчивы, вследствие чего траектория их свободного полёта в жидкости представляет собой беспорядочную ломаную линю, образованную отрезками кривых. То же касается и свободного полёта в жидкости объёмных тел типа многогранников, с граней которых при движении беспорядочно срываются вихри. Соответственно этим гидромеханическим обстоятельствам, если из зоны взрыва в носовой оконечности вылетело что-то большое (например, фрагмент лёгкого корпуса с набором и конструкциями, находящимися в междубортном пространстве, размерами 5 м ґ 4 м ґ 2 м), то вряд ли оно долетит до комингс-площадки, расположенной в корме более чем за сто метров от эпицентра. Тем более не долетит, если оно небольшое по размерам, поскольку в этом случае оно растратит свою кинетическую энергию в воде ещё ближе от места вылета.
Может возникнуть вопрос: “Почему согласно предполагаемой схеме, торпеды из состава поразившего “Курск” залпа взорвались в разных местах, причём достаточно далеко удалённых друг от друга?”.
Дело в том, что принципы и алгоритмы самонаведения разных торпед в одном залпе могут быть разными. Торпеда в пассивном режиме самонаведения может наводиться на шумы механизмов лодки и посылки её гидролокаторов; в активном режиме самонаведения может наводиться на основе посылок её бортового гидролокатора; торпеда может выявлять вихревой кильватерный след корабля и наводиться по нему; торпеда может быть дистанционно управляемой по проводам и наводиться с борта выпустившей её подводной лодки на основе информации лодочной БИУС. На разных участках движения торпеды принципы осуществления наведения её на цель могут быть разными, и она может переключаться из одного режима в другой как автоматически, так и по команде извне.
Кроме того, при залповой стрельбе торпеды из аппаратов выходят не одновременно, а с некоторыми интервалами, и при этом программа залповой стрельбы может предусматривать осуществление каждой торпедой нескольких манёвров после выхода её из аппарата для того, чтобы торпеды на пути к цели шли в достаточно широкой полосе. Такое движение торпед к цели в полосе, шириной несколько сотен метров, увеличивает вероятность захвата цели (особенно маневрирующей) головками самонаведения и соответственно увеличивает вероятность поражения цели не той или иной торпедой, а залпом.
При осуществлении этих принципов в торпедной стрельбе, на конечном участке своего движения торпеды одного залпа могут подходить к цели с разных направлений, а самонаводиться на цель они могут на основе различных физических и алгоритмических принципов. Поэтому вовсе не предопределено статистически поражение торпедами каких-то определённых районов корабля, как это было, когда в годы второй мировой войны первые появившиеся торпеды с пассивными акустическим головками самонаведения, наводясь по шуму гребных винтов, поражали цели преимущественно в кормовую оконечность.
Кроме того, для поражения цели вовсе не обязательно прямое попадание в неё торпеды: торпеды снабжаются многоканальными взрывателями, каждый из каналов которых реагирует на различные физические поля надводного или подводного корабля (электромагнитное, акустическое, падение освещённости при прохождении под днищем корабля, кильватерную струю и т.п.) и осуществляют подрыв боезапаса торпеды в зоне поражения на расстоянии в несколько метров от корпуса корабля
[199] . При этом корабль поражает не фугасное действие взрыва, не кумулятивная струя, а сформировавшийся в воде фронт ударной волны, и повреждения, наносимые ударной волной, оказываются даже более тяжёлыми, чем повреждения, которые способен нанести контактный взрыв той же мощности непосредственно у борта.