Американский физик Майкельсон в 1881 году поставил опыт для выяснения участия эфира в движении тел.
Ряд явлений (аберрация света, опыт Физо) приводил к заключению, что эфир неподвижен или частично увлекается телами при их движении. Согласно гипотезе неподвижного эфира, можно наблюдать «эфирный ветер» при движении Земли сквозь эфир, и скорость света по отношению к Земле должна зависеть от направления светового луча относительно направления ее движения в эфире. Однако этого не было обнаружено – опыт Майкельсона дал отрицательный результат.
Опыт Майкельсона не сыграл решающей роли в создании теории относительности. Об этом говорил и сам Эйншейн. Он использовал результаты опыта Майкельсона для обоснования уже созданной теории.
Результаты опыта Майкельсона, как и других подобных опытов, могли быть объяснены и без радикальных изменений классических представлений о пространстве и времени. Вообще, результаты опытов допускают различные теоретические интерпретации. Глубокие мировоззренческие изменения в физике были вызваны не отдельными экспериментальными результатами, а неудовлетворительностью положения дел в электродинамике, оптике, физике вообще.
Всю совокупность результатов в области электродинамики движущихся тел в начале века можно было объяснить на базе преобразований Лоренца, которые были получены в 1904 году как преобразования, по отношению к которым уравнения классической микроскопической электродинамики сохраняют свой вид.
Лоренц и Пуанкаре интерпретировали эти преобразования как результат сжимания тел постоянным давлением эфира, т.е. динамически в рамках классических представлений о пространстве и времени.
Эйнштейн интерпретировал преобразования Лоренца кинетически, т.е. как характеризующие свойства движения в пространстве и времени, тем самым заложив основы теории относительности. Он снял проблему эфира, упразднив его, радикально изменил классические представления о пространстве и времени.
Явления, описываемые теорией относительности, называются релятивистскими (от латинского «относительный») и проявляются при скоростях, близких к скорости света в вакууме (эти скорости тоже принято называть релятивистскими).
В соответствии с теорией относительности, существует предельная скорость передачи любых взаимодейсвий и сигналов из одной точки пространства в другую – это скорость света в вакууме. Существование предельной скорости означает необходимость глубокого изменения обычных пространственно-временных представлений, основанных на повседневном опыте, поскольку ведет к таким явлениям, как замедление времени, релятивистское сокращение размеров тел, относительность одновременности.
Теория тяготения Ньютона предполагает мгновенное распространение тяготения, и уже поэтому не может быть согласована со специальной теорией относительности, утверждающей, что никакое взаимодействие не может распространяться со скоростью, превышающей скорость света в вакууме.
Обобщение теории тяготения на основе специальной теории относительности было сделано Эйнштейном. Новая теория была названа им общей теорией относительности.
Самой важной особенностью поля тяготения, известной в ньютоновской теории и положенной Эйнштейном в основу общей теории относительности, является то, что тяготение совершенно одинаково действует на разные тела, сообщая им одинаковые ускорения независимо от массы, химического состава и других свойств тел. Так, на поверхности Земли все тела падают под влиянием ее поля тяготения с одинаковым ускорением – ускорением свободного падения. Этот факт был установлен опытным путем Галилеем. Он может быть сформулирован как факт равенства инертной массы (входящей во второй закон Ньютона) и гравитационной массы (входящей в закон тяготения).
В картине мира современной физики фундаментальную роль играет принцип эквивалентности, согласно которому поле тяготения в небольшой области пространства и времени (в которой его можно считать однородным и постоянным во времени) по своему проявлению тождественно ускоренной системе отсчета.
Принцип эквивалентности следует из равенства инертной и гравитационной масс. В соответствии с этим принципом общая теория относительности трактует тяготение как искривление (отличие геометрии от евклидовой) четырехмерного пространственно-временного континуума. В любой конечной области пространство оказывается искривленным – неевклидовым. Это означает, что в трехмерном пространстве геометрия, вообще говоря, будет неевклидовой, а время в разных точках будет течь по-разному.
Ряд выводов ОТО качественно отличаются от выводов ньютоновской теории тяготения. Важнейшие среди них связаны с возникновением черных дыр, сингулярностей пространства-времени, существованием гравитационных волн (гравитационного излучения).
Квантовая механика, ее интерпретация
Квантовая механика (волновая механика) – теория, которая устанавливает способ описания и законы движения микрочастиц (элементарных частиц, атомов, молекул, атомных ядер) и их систем, а также связь величин, характеризуюих частицы и системы, с физическими величинами, непосредственно измеряемыми на опыте.
Квантовая механика описывает законы движения микрочастиц. Однако поскольку свойства макроскопических тел определяются движением и взаимодействием частиц, из которых они состоят, постольку квантовая механика применяется для объяснения многих макроскопических явлений. Например, квантовая механика позволила понять многие свойства твердых тел, последовательно объяснить такие явления, как ферромагнетизм, сверхтекучесть, сверхпроводимость, понять природу таких астрофизических объектов, как белые карлики, нейтронные звезды, выяснить механизм протекания термоядерных реакций в Солнце и звездах.
Для классической механики характерно описание частиц путем задания их положения в пространстве (координат) и скоростей и зависимости этих величин от времени. Опыт показал, что такое описание частиц не всегда справедливо, в частности, оно не применимо для описания микрочастиц.
Квантовая механика делится на нерелятивистскую, справедливую в случае малых скоростей, и релятивистскую, удовлетворяющую требованиям специальной теории относительности.
Нерелятивисткая квантовая механика (как и механика Ньютона для своей области применимости) – это законченная и логически непротиворечивая фундаментальная физическая теория.
Релятивистская квантовая механика не является в такой степени завершенной и свободной от противоречий теорией.
Если в нерелятивистской области можно считать, что взаимодействие передается мгновенно на расстоянии, то в релятивистской области оно распространяется с конечной скоростью, значит, должен существовать агент, передающий взаимодействие – физическое поле. Трудности релятивистской теории – это трудности теории поля, с которыми встречается как релятивистская классическая механика, так и релятивистская квантовая механика.
Соотношение между классической и квантовой механикой определяется существованием универсальной мировой постоянной – постоянной Планка, которая называется также квантом действия и имеет размерность действия. Если в условиях данной задачи физические величины размерности действия значительно больше постоянной Планка, то применима классическая механика. Формально это условие и является критерием применимости классической механики.