Как уже указывалось, движение частиц плазмы поперек силовых линий магнитного поля затруднено, и магнитное поле может играть роль воронки, направляющей потоки заряженных частиц в двигатель. В результате эффективная площадь массозаборника при практически достижимых магнитных полях может возрасти в несколько тысяч раз.

Например, для источника магнитного поля в виде витка с током диаметром 15 м и индукцией магнитного поля в центре 10 Тс площадь, с которой будет собираться поток плазмы, составит около 2 км2. Двигатель с подобным заборником массы на низких орбитах при скорости истечения 100 км/с может создавать тягу 2 кгс и потреблять мощность на создание тяги 200 кВт.

Такие двигатели могут быть пригодны для транспортных операций между орбитами с высотами от 300 до 10 000 км. Выше плотность среды сильно падает, и в межпланетном пространстве концентрация частиц составляет всего 10 см–3, что соответствует плотности 10–20 кг/м3. Для того чтобы представить себе такую степень разрежения вещества, воспользуемся образным сравнением известного английского астронома Дж. Джинса: «Одним своим выдохом муха могла бы заполнить воздухом такой плотности целый собор».

Массовый расход через двигатель будет, конечно, увеличиваться с ростом скорости ракеты, но при этом из-за увеличения энергии потока при постоянной напряженности магнитного поля будет и уменьшаться эффективный размер магнитного заборника. В итоге расход массы будет расти всего лишь пропорционально корню кубическому из скорости.

Если двигатель, снабженный магнитным массозаборником, будет чисто ионным (без компенсации заряда отбрасываемых частиц), то возможно некоторое увеличение потока внешней массы за счет появления электрического заряда на ракете. Например, если двигатель ускоряет положительно заряженные ионы, то он приобретает отрицательный заряд и начинает притягивать ионы космического пространства. Эти ионы магнитным полем могут направляться в ускорительное устройство и использоваться как рабочее тело.

Однако для получения таким способом достаточных расходов массы при плотности межпланетной среды нужны очень высокие потенциалы ракеты относительно окружающего пространства. Для корабля диаметром 15 м при потенциале 106 В массовый поток составит 4 · 10–8 кг/с. При доускорении этого потока, скажем, потенциалом в 10 раз большим, тяга двигателя составит 0,03 кгс. Но ускорение разностью потенциалов 107 В соответствует энергии частиц, образующихся при термоядерных реакциях. В этом случае если использовать их в качестве отбрасываемой массы, добавление ионов космической плазмы не даст заметного выигрыша в тяге.

Подводя итоги всему сказанному, можно сделать вывод о том, что использование межпланетной, а тем более межзвездной среды в качестве рабочего тела ракетных двигателей станет возможным, если характеристики существующих источников магнитного поля будут увеличены в сотни тысяч раз. Пути такого повышения в настоящее время даже неизвестны.

Однако в межпланетном пространстве имеется достаточное количество макротел — планет, их спутников, астероидов, метеоритов. Мы не будем касаться непосредственного употребления пород, слагающих космические тела, и их атмосфер. В принципе вещества, из которых состоят космические тела, могут быть применены в любых из описанных здесь двигателях. Рассмотрим лишь способы бесконтактного использования макротел.

Наиболее сильно в космическом пространстве проявляется гравитационное взаимодействие. К сожалению, возможности его использования для ускорения космических аппаратов сильно ограниченны. Действительно, пролетая мимо космического тела, ракета будет разгоняться за счет его притяжения до тех пор, пока не пройдет точку минимального сближения. Далее начнется ее торможение, и суммарное изменение кинетической энергии ракеты будет равно нулю. Если бы после минимального сближения можно было бы заэкранировать силу тяготения или изменить ее знак на противоположный, то многие задачи космических полетов были бы легко решены. Но, увы, современная наука даже не знает, возможны ли вообще такие манипуляции с гравитационным полем.

Тем не менее в некоторых случаях гравитационным взаимодействием можно воспользоваться для сокращения бортового запаса массы. Это касается в первую очередь поворота плоскостей орбиты космических аппаратов. Например, при запуске геостационарного спутника с облетом Луны можно сократить расход рабочего тела на 10 % по сравнению с прямым запуском. Более" того, возможны двигательные системы, работающие за счет неоднородностей гравитационного поля, которые для перемещения полезного груза в поле тяжести вообще не нуждаются в бортовых запасах массы.

Принцип их работы основан на использовании так называемых приливных сил (рис. 14). Если две массы, связанные тросом, вращаются на орбите искусственного спутника Земли, то в целом такая система движется со скоростью, соответствующей орбите ее центра масс. В результате масса, наиболее удаленная от Земли, будет иметь большую скорость, чем нужно для ее равновесного движения, и поэтому на нее должна действовать избыточная центробежная сила. Для ближней к Земле массе, наоборот, скорость меньше равновесной и имеется избыточная гравитационная сила, равная и противоположно направленная сила, приложенной к верхней массе.

Эти силы называются приливными. Они натягивают трос, и, распуская трос с трением, мы заставим приливные силы совершать работу. Эта работа осуществляется за счет кинетической энергии системы, и в итоге центр тяжести ее будет переходить на более низкую орбиту. Подобным же образом приливные силы, действующие между планетами, вызывают их взаимное сближение. Например, океанские приливы, вызываемые Луной, в результате трения о поверхность Земли приводят к уменьшению расстояния между Луной и Землей.

И, наоборот, совершая работу против действия приливных сил, можно повысить орбиту центра тяжести системы. Для повторения цикла после полного сближения масс их нужно оттолкнуть при свободно распускающемся тросе. Но эффективность такой двигательной системы в околоземном пространстве очень мала.

Величина приливных сил равна произведению ускорения силы тяжести на орбите на отношение расстояния между массами к радиусу орбиты. На орбите высотой 350 км при расстоянии между массами 10 км она составляет 1,4 · 10–2 Н/кг, на геостанционарной орбите — 7 · 10–5 Н/кг. Работа, совершаемая за один цикл сближения, соответственно равна 7 · 10–2 и 3,5 · 10–4 Дж/кг. Чтобы перевести космический аппарат с орбиты высотой 350 км на геостационарную орбиту (35 880 км), потребуется около 108 циклов. Даже если допустить, что каждый цикл будет совершаться за 1 с, то на такое перемещение потребуется более 10 лет.

Космические двигатели будущего img_16.png

Рис. 14. Схема «гравитационного» двигателя (стрелками указано направление приливных сил): 1 — полезный груз, 2 — трос, 3 — устройства для намотки троса, 4 — Земля

Возможно, что когда человечество начнет создавать поселения в околоземном пространстве и потребуется транспортировка на высокие орбиты многих миллионов тонн грузов, такой тихоходный способ перемещения найдет свое применение. Преимущества его очевидны: полное отсутствие расходуемой массы и малые мощности двигательной системы.

Поскольку, в отличие от гравитационного взаимодействия, электромагнитным взаимодействием люди научились управлять, то возможно создание двигательных систем с использованием макротел на этой основе. В простейшем случае такой двигатель представляет собой ускоритель заряженных частиц. При пролете мимо космического тела его облучают заряженными частицами (например, электронами). В результате космическое тело и ракета оказываются носителями зарядов противоположных знаков.

Притяжение зарядов приводит к ускорению ракеты. После максимального сближения ракеты с космическим телом можно либо выключить ускоритель, и заряды быстро скомпенсируются плазмой космического пространства, либо, пока заряд на космическом теле сохраняется, произвести перезарядку ракеты, и тогда силы притяжения перейдут в силы отталкивания.


Перейти на страницу:
Изменить размер шрифта: