6. Суждение Мулуда о Канте имеет, на наш взгляд, принципиальное значение. Он обращает внимание на важное достижение кантовской философии способность согласовать априорность логической формы и апостериорность опытных данных. "Однако, - пишет далее Мулуд, - гармония между формой и содержанием, которую гарантирует трансцендентальная философия, освобождает разум от необходимости искать адекватный аппарат формализации данной реальности, что как раз входит в задачу аксиоматических наук. Кантовская система не располагает процедурами, которые позволяют осуществить аксиоматизацию, одновременно верифицируя формальную систему, для экспликации новых аспектов предмета" ([37], c. 36). Такая оценка кантовского априоризма верна, если ограничиться рамками "Критики чистого разума". Однако все те функции, которыми по мнению Мулуда не располагает кантовская система (формализация реальности и верификация формальной системы), выполняет рефлектирующая способность суждения, описанная Кантом в "Критике способности суждения". Рассмотрение действия этой способности будет одной из главных тем нашего исследования. вернуться в текст
7. По поводу одной из названных категорий, о дискурсе, необходимо дать некоторые объяснения уже сейчас - тем более этот термин вынесен в заголовок работы. Это слово часто используется в самых разных смыслах и нужно пояснить, что мы имеем в виду, используя его.
В статье Ю.Степанова ([54], c.36-46) приводится (со ссылкой на различных авторов) целый ряд определений термина "дискурс". Не пытаясь анализировать их, приведем те, которые в нашей работе чаще всего будут подразумеваться. Таковым является понимание дискурса как последовательности связанных высказываний или "последовательности элементарных пропозиций, связанных между собой логическими отношениями конъюнкции, дизъюнкции и т.п." (с. 38). Такую последовательность, впрочем, с успехом можно было бы назвать и "рассуждением". Говоря о "математическом дискурсе", мы имеем в виду, что наряду с рассуждением (последовательностью пропозиций, речью) в наше рассмотрение должна быть также включена и графика, например, геометрические чертежи. Математический дискурс, следовательно, является для нас более широким понятием, чем математическое рассуждение.
Другим возможным пониманием слова "дискурс" является связный текст или группа текстов (Степанов указывает, что такое понимание присуще англо-саксонской традиции - с. 36). Такое понимание также важно для нас. Понимая дискурс как текст, мы имеем в виду фиксацию последовательности высказываний, равно как и графических образов. Благодаря такой фиксации, дискурс становится предметом интерпретации и сам может быть рассмотрен как графическая конструкция. Это означает, в частности, что дискурс (рассмотренный в качестве текста) может сам стать предметом высказывания или другого дискурса.
Степанов не считает удовлетворительными такие интерпретации термина "дискурс", находя их чрезмерно узкими. Он, в конечном счете, определяет дискурс как "язык в языке" ([54], c. 44), как достаточно широкий порождающий контекст множества текстов, определяющий и лексику, и синтаксис, и семантику. Мы, однако, будем избегать такой интерпретации для нас очень будет важно указать на серьезную дистанцию, разделяющую понятия "дискурс" и "язык". вернуться в текст
ГЛАВА 1 Рассмотрение онтологического статуса предметов математики в некоторых философских системах
К математическим образам и способам рассуждения философы, как правило, обращаются очень охотно.(См. примечание 1) Поэтому представить здесь сколько-нибудь полный обзор различных философских представлений о математических предметах не представляется возможным. Для этого пришлось бы написать нечто вроде курса истории философии. Задача настоящей главы состоит в том, чтобы выделить два принципиально отличных друг от друга подхода к математической онтологии, в рамках которых возникают различные определения существования. Прежде всего мы обратимся к пониманию природы математических объектов в философии Платона и Аристотеля. Их взгляды на математику явили своего рода парадигму для многих последующих поколений. Вполне естественно рассматривать их концепции математики как конкурирующие. Наверное можно легко проследить идущие через века "линию Платона" и "линию Аристотеля", связывая первую с реализмом, а вторую с эмпиризмом в подходе к математической онтологии. Нас, однако, больше будет интересовать тот общий подход, который был выработан совместно обоими философами и который, в известном смысле, может быть противопоставлен трансцендентальному рассмотрению математического рассуждения.
1 Платон и Аристотель: определение сущности
Отношение Платона к математике естественно рассматривать в рамках проводимого им различения между подлинным бытием и становлением. Онтологический статус любой вещи определяется в терминах такого различения. Вещь существует в той мере, в какой причастна подлинному бытию, и в той же мере она может быть познана умом. То, что доступно чувству (и в той мере, в какой оно доступно чувству) не существует, а лишь становится, и о нем возможно лишь мнение, а не знание. Такого рода различение встречается во многих диалогах - сошлемся хотя бы на следующий пассаж из "Тимея": "Представляется мне, что для начала должно разграничить вот какие две вещи: что есть вечное, не имеющее возникновения бытие и что есть вечно возникающее и никогда не сущее. То, что постигается с помощью размышления и рассуждения, очевидно, и есть вечно тождественное бытие; а то, что подвластно мнению и неразумному ощущению, возникает и гибнет, но никогда не существует на самом деле" (Тимей, 27d-28a). Платон неоднократно обращался к этому противопоставлению и попыткам описать мир бытия и мир становления, но один интересный аспект описания последнего он обнаружил в диалоге "Филеб". Там указывается, что, характеризуя данные чувств (т.е. высказывая мнение), мы всегда сопоставляем одно ощущение с другим такого же рода. Мы говорим о чувственно воспринимаемой вещи, что она "более теплая" или "более холодная" (чем, например, другая вещь или та же самая в другое время). В мнении мы всегда прибегаем к сопоставлению, выражая его словами "более" или "менее", "сильнее" или "слабее". Таким образом мы выстраиваем беспредельную шкалу отношений - ведь говоря "больше", мы всегда подразумеваем возможность другого, которое больше (сильнее, теплее), чем воспринимаемое сейчас. Мир становления предстает именно как набор отношений, где ничего не существует самостоятельно, но определяется лишь по сопоставлению с другим. Это какая-то беспредельная совокупность не имеющих отчетливого определения и ясного очертания предметов, которые можно лишь сопоставлять с другим, но нельзя рассмотреть каждый самостоятельно, "сам по себе" ("Филеб" 24b-d).
Теперь противопоставления подлинного сущего и становящегося может быть описано в следующих терминах: первое познается и существует самостоятельно, само по себе, а потому и определяется само из себя, как независимая от другого сущность. Второе же лишь видится и мнится в совокупности, как нечто, не имеющее собственного определения, но предстающее обязательно совместно с другим. Оно не обладает никакими собственными характеристиками, оно лишь "более" или "менее", чем другое. Это элемент в беспредельной совокупности отношений, который если чем и определяется, то только отличием от другого. Существование, таким образом, оказывается тождественно самоопределенности. Чем в большей мере самостоятельна вещь, тем с большим правом она может быть признана сущей. В главах V-VII "Государства" Платон выстраивает целую иерархию сущностей, место которых тем выше, чем меньше нуждаются они в другом для своего определения. По поводу находящегося на вершине иерархии Блага (или Первообраза в "Тимее" или Единого в "Пармениде"), впрочем, уже оказывается невозможно сказать, что оно существует, поскольку, определяя все остальное, оно оказывается недоступно никакому определению и познанию.
Каково же место математических предметов в этой иерархии? Прежде всего, следует сказать о числах и счете. Разговор о них начинается тогда, когда возникает потребность установить в чувственном мире хотя бы какую-то определенность, т.е. начать не только ощущать вещи, но и размышлять о них. Для этого же необходимо прежде всего отделить одно ощущаемое от другого, выделить их в нечто (хотя бы отчасти) самостоятельное. "Если каждый из них один, а вместе их два, то эти два будут в мышлении разделены" ("Государство", VII, 524c)... и далее "Для выяснения этого мышление в свою очередь вынуждено рассмотреть большое и малое, но не в их слитности, а в их раздельности: тут полная противоположность зрению." Но разделять и обособлять предметы значит их пересчитывать, т.е. указывать сначала на одно, потом на второе, потом на третье. Мы уже не говорим о чем-то, что оно "более легкое" или "менее теплое". Мы выделяем его как нечто особенное в ряду пересчитываемых предметов. Ряд отдельных сущностей оказывается доступен мысли именно благодаря числу. Следовательно число есть начало (причина) самостоятельного существования чувственно воспринимаемой вещи. Ее можно мыслить прежде всего благодаря количеству.