В телефонной системе существенным ограничивающим фактором служит относительное время, в течение которого абонент не может получить нужного ему соединения. 99-процентная вероятность успешного вызова, конечно, удовлетворит самых требовательных; 90 процентов успешных вызовов, вероятно, достаточно для того, чтобы вести свои дела довольно удовлетворительно. 75-процентная вероятность уже вызывает досаду, но все же позволяет кое-как вести дела; если же половина вызовов неудачна, то абоненты начнут требовать снятия своих телефонов. Но это лишь общие цифры. Если вызовы проходят через n отдельных ступеней коммутации и вероятности отказа независимы и одинаковы на всех ступенях, то для того, чтобы получить общую вероятность успешного вызова, равную p, вероятность успешного соединения на каждой ступени должна составлять p1/n. Следовательно, чтобы получить 75-процентную вероятность соединения после пяти ступеней, мы должны иметь приблизительно 95-процентную вероятность успеха на ступень. Чтобы получить 90 процентов успешных вызовов, мы должны иметь 98 процентов успешных соединений на каждой ступени. Чтобы получить 50-процентную вероятность, нужно иметь вероятность успеха на каждой ступени в 87 процентов. Мы видим, что чем больше ступеней, тем быстрее обслуживание становится очень плохим после того, как превышен некоторый критический уровень вероятности неуспеха отдельного вызова, и тем быстрее оно становится очень хорошим после того, как вероятность неуспеха опустилась ниже этого критического уровня. Таким образом, система автоматической коммутации, состоящая из многих ступеней и рассчитанная на определенную вероятность отказа, не обнаруживает явных признаков неблагополучия, пока нагрузка не дойдет до критической точки, после чего эта система совершенно распадается и образуется катастрофический затор.
Человек имеет наиболее развитую нервную систему из всех живых существ, и его поведение, вероятно, определяется наиболее длинными из эффективно действующих нейтронных цепей. Если он надламывается глубоко и катастрофически, то это должно означать, что он выполнял сложные действия очень уж близко к грани перегрузки. Перегрузка может возникать различным образом: вследствие избытка передаваемых сообщений, физической потери каналов связи или чрезмерного занятия каналов такой нежелательной нагрузкой, как циркулирующие записи памяти, усиливающиеся до превращения в навязчивые идеи. Во всех подобных случаях внезапно наступает момент, когда для нормальных видов нагрузки не будет хватать каналов, и тогда перед нами психическое расстройство, доходящее нередко до помешательства.
Указанное расстройство действует сперва на способности или операции, в которых участвуют наиболее длинные цепи нейронов. Есть серьезное основание для отождествления этих процессов с теми, которые мы обычно называем высшими. Известно, что повышение температуры почти до физиологических границ облегчает выполнение большей части, если не всех, нейронных процессов; эффект тем заметнее, чем выше процесс, приблизительно соответствуя нашей обычной оценке «ранга» процессов. Но любое облегчение процессов в единичной системе нейрон-синапс становится кумулятивным, когда нейрон соединен последовательно с другими нейронами. Поэтому степень усиления процесса при повышении температуры может служить грубой мерой длины участвующей в нем нейронной цепи.
Мы видим, таким образом, что большая длина нейронных цепей человеческого мозга по сравнению с мозгом животных объясняет, почему психические расстройства у человека наиболее заметны и, вероятно, наиболее распространены. Вопрос допускает и другой более специфический подход. Рассмотрим сначала два геометрически подобных мозга с одним и тем же отношением весов серого и белого вещества и с линейными размерами, относящимися как A:B. Пусть объем клеток серого вещества и поперечное сечение волокон белого вещества у первого и второго мозга одни и те же[5]. Тогда отношение числа клеток в обоих случаях равно A3:B3, а отношение числа длинных соединительных линий равно A2:B2. значит, что при одинаковой плотности процессов в клетках плотность процессов, протекающих в волокнах, будет для большого мозга в A:B раз больше, чем для малого мозга.
Сравнивая человеческий мозг с мозгом других млекопитающих, мы видим, что первый отличается гораздо большей рельефностью поверхности. Относительная толщина серого вещества примерно одинакова в обоих случаях, но человеческий мозг имеет гораздо более развитую систему извилин и борозд. Это равносильно увеличению количества серого вещества за счет белого вещества. Внутри извилин белое вещество уменьшается главным образом из-за уменьшения длины волокон, а не их числа, поскольку противоположные склоны извилины ближе между собой, чем на мозге того же размера, но с гладкой поверхностью. С другой стороны, для соединительных линий между разными извилинами расстояние, которое они должны пройти, только увеличивается вследствие рельефности мозга. Можно думать, что человеческий мозг оказывается достаточно эффективным, когда дело касается коротких соединительных линий, но не слишком надежным, когда затронуты длинные магистральные пути. Это значит, что в случае перегрузок первыми будут нарушены процессы, в которых участвуют удаленные друг от друга части мозга. Таким образом, при помешательстве наименее устойчивыми оказываются процессы, захватывающие несколько центров, т. е. ряд различных двигательных процессов и значительное число ассоциативных процессов. Именно эти процессы обычно относятся к высшим. Таким образом, мы получаем еще одно подтверждение нашей как будто оправдываемой опытом уверенности, что при помешательстве прежде всего страдают высшие процессы.
Существуют некоторые указания на то, что длинные пути в мозгу обнаруживают тенденцию пролегать совершенно вне полушарий головного мозга и идти через низшие центры. На это указывает тот факт, что при перерезке некоторых длинных петель белого вещества в полушариях головного мозга наблюдаются совершенно незначительные повреждения, как будто эти поверхностные соединения настолько недостаточны, что обеспечивают лишь небольшую часть необходимых связей.
В свете этого интересно рассмотреть явления право- и леворукости и преобладания (доминирования) полушарий. Подобная асимметрия функций, по-видимому, встречается и у других млекопитающих, хотя у них она менее заметна, отчасти, вероятно, потому, что для выполнения задач им не требуется такая организация и умение. Однако разница в ловкости мышц правой и левой стороны даже у других приматов, по-видимому, меньше, чем у человека. Праворукость нормального человека, как хорошо известно, обычно сочетается с преобладанием левой стороны мозга, а леворукость меньшинства людей – с преобладанием правой стороны мозга. Иначе говоря, функции головного мозга распределены неравномерно между двумя полушариями, и одно из них – преобладающее – сосредоточивает львиную долю высших функций. Правда, многие существенно двусторонние функции, например связанные с полями зрения, представлены каждая в своем полушарии, хотя это справедливо отнюдь не для всех двусторонних функций. Однако большинство «высших» областей находится исключительно в преобладающем полушарии. Например, у взрослого серьезное повреждение второстепенного полушария оказывает значительно меньшее действие, чем аналогичное повреждение преобладающего полушария. У Пастера на сравнительно раннем этапе его карьеры случилось кровоизлияние в правой стороне мозга, после чего у него остался небольшой левосторонний паралич-гемиплегия. После смерти мозг его был исследован, и обнаружилось, что у Пастера было настолько серьезное повреждение правой стороны мозга, что, как говорили, после этого повреждения «у него оставалась лишь половина мозга». У него были серьезные поражения теменной и височной области. Тем не менее после этого повреждения Пастер сделал некоторые из своих самых значительных открытий. У взрослого правши подобное повреждение левой стороны, почти наверное, было бы роковым и привело бы пострадавшего к животному состоянию, к состоянию умственной и нервной инвалидности.
5.
Серое вещество мозга образуется телами и отростками нейронов (нервных клеток), а белое – нервными волокнами, т. е. частями аксонов (длинных отростков нейронов), покрытыми белой миэлиновой оболочкой. – Прим. ред.